% Generated by roxygen2: do not edit by hand % Please edit documentation in R/linear_model_class.R \name{linear_model} \alias{linear_model} \title{Linear model} \usage{ linear_model(formula, na_action = "na.omit", contrasts = list(), ...) } \arguments{ \item{formula}{(formula) A symbolic description of the model to be fitted.} \item{na_action}{(character) NA action. Allowed values are limited to the following: \itemize{ \item{\code{"na.omit"}: Incomplete cases are removed.}\item{\code{"na.fail"}: An error is thrown if NA are present.}\item{\code{"na.exclude"}: Incomplete cases are removed, and the output result is padded to the correct size using NA.}\item{\code{"na.pass"}: Does not apply a linear model if NA are present.}} The default is \code{"na.omit"}.} \item{contrasts}{(list) The contrasts associated with a factor. The default is \code{list()}.} \item{...}{Additional slots and values passed to \code{struct_class}.} } \value{ A \code{linear_model} object with the following \code{output} slots: \tabular{ll}{ \code{lm} \tab (lm) The lm object for this model_. \cr \code{coefficients} \tab (numeric) The coefficients for the fitted model_. \cr \code{residuals} \tab (numeric) The residuals for the fitted model_. \cr \code{fitted_values} \tab (numeric) The fitted values for the data used to train the model_. \cr \code{predicted_values} \tab (numeric) The predicted values for new data using the fitted model_. \cr \code{r_squared} \tab (numeric) The value of R Squared for the fitted model_. \cr \code{adj_r_squared} \tab (numeric) The value ofAdjusted R Squared for the fitted model_. \cr } } \description{ Linear models can be used to carry out regression, single stratum analysis of variance and analysis of covariance. } \details{ This object makes use of functionality from the following packages:\itemize{ \item{\code{stats}}} } \section{Inheritance}{ A \code{linear_model} object inherits the following \code{struct} classes: \cr\cr \verb{[linear_model]} >> \verb{[model]} >> \verb{[struct_class]} } \examples{ M = linear_model( formula = y ~ x, na_action = "na.omit", contrasts = list()) D = iris_DatasetExperiment() M = linear_model(formula = y~Species) } \references{ R Core Team (2024). \emph{R: A Language and Environment for Statistical Computing}. R Foundation for Statistical Computing, Vienna, Austria. \url{https://www.R-project.org/}. }