... | ... |
@@ -75,30 +75,29 @@ Collate: |
75 | 75 |
'wilcox_test_class.R' |
76 | 76 |
'zzz.R' |
77 | 77 |
Depends: struct (>= 0.99.3) |
78 |
-Imports: ggplot2, |
|
79 |
- pmp, |
|
80 |
- gridExtra, |
|
81 |
- sp, |
|
82 |
- scales, |
|
83 |
- stats, |
|
84 |
- methods, |
|
78 |
+Imports: datasets, |
|
79 |
+ ggplot2, |
|
80 |
+ ggthemes, |
|
81 |
+ grid, |
|
82 |
+ gridExtra, |
|
83 |
+ methods, |
|
84 |
+ scales, |
|
85 |
+ sp, |
|
86 |
+ stats |
|
87 |
+RoxygenNote: 7.0.2 |
|
88 |
+Suggests: agricolae, |
|
89 |
+ BiocStyle, |
|
85 | 90 |
car, |
86 |
- grid, |
|
87 |
- reshape2, |
|
88 |
- agricolae, |
|
91 |
+ covr, |
|
89 | 92 |
emmeans, |
90 |
- nlme, |
|
91 |
- ggthemes, |
|
93 |
+ pmp, |
|
92 | 94 |
ggdendro, |
93 |
- datasets |
|
94 |
-RoxygenNote: 7.0.2 |
|
95 |
-Suggests: |
|
96 |
- testthat, |
|
97 |
- covr, |
|
98 | 95 |
knitr, |
99 |
- rmarkdown, |
|
100 |
- BiocStyle, |
|
96 |
+ nlme, |
|
101 | 97 |
pls, |
102 |
- Rtsne |
|
98 |
+ reshape2, |
|
99 |
+ rmarkdown, |
|
100 |
+ Rtsne, |
|
101 |
+ testthat |
|
103 | 102 |
VignetteBuilder: knitr |
104 | 103 |
biocViews: WorkflowStep |
... | ... |
@@ -97,14 +97,12 @@ exportMethods(model_predict) |
97 | 97 |
exportMethods(model_reverse) |
98 | 98 |
exportMethods(model_train) |
99 | 99 |
exportMethods(run) |
100 |
-import(ggdendro) |
|
101 | 100 |
import(ggplot2) |
102 | 101 |
import(ggthemes) |
103 | 102 |
import(grid) |
104 | 103 |
import(gridExtra) |
105 | 104 |
import(methods) |
106 | 105 |
import(pmp) |
107 |
-import(reshape2) |
|
108 | 106 |
import(scales) |
109 | 107 |
import(stats) |
110 | 108 |
import(struct) |
... | ... |
@@ -14,7 +14,7 @@ |
14 | 14 |
#' @export HSD |
15 | 15 |
#' @examples |
16 | 16 |
#' M = HSD() |
17 |
-HSD = function(alpha=0.05,mtc='fdr',formula,unblanaced=FALSE,...) { |
|
17 |
+HSD = function(alpha=0.05,mtc='fdr',formula,unbalanced=FALSE,...) { |
|
18 | 18 |
out=struct::new_struct('HSD', |
19 | 19 |
alpha=alpha, |
20 | 20 |
mtc=mtc, |
... | ... |
@@ -162,7 +162,7 @@ setMethod(f="model_apply", |
162 | 162 |
|
163 | 163 |
# for each combination of factors... |
164 | 164 |
out2=lapply(FF,function(x) { |
165 |
- A=HSD.test(LM,x,group = FALSE)$comparison |
|
165 |
+ A=agricolae::HSD.test(LM,x,group = FALSE)$comparison |
|
166 | 166 |
if (ALIAS) { |
167 | 167 |
A[!is.na(A)]=NA # replace with NA if alias are present |
168 | 168 |
} |
... | ... |
@@ -79,7 +79,7 @@ setMethod(f="chart_plot", |
79 | 79 |
#' @param label_filter Only include labels for samples in the group specified by label_filter. |
80 | 80 |
#' If zero length then all labels will be included. |
81 | 81 |
#' @param label_factor The sample_meta column to use for labelling the samples. |
82 |
-#' If zero length then the rownames will be used. |
|
82 |
+#' If 'rownames' then the rownames will be used. |
|
83 | 83 |
#' @param label_size The text size of the labels.NB ggplot units, not font size units. |
84 | 84 |
#' Default 3.88. |
85 | 85 |
#' @param ... additional slots and values passed to struct_class |
... | ... |
@@ -94,10 +94,10 @@ pca_scores_plot = function( |
94 | 94 |
factor_name, |
95 | 95 |
ellipse='all', |
96 | 96 |
label_filter=character(0), |
97 |
- label_factor=character(0), |
|
97 |
+ label_factor='rownames', |
|
98 | 98 |
label_size=3.88, |
99 | 99 |
...) { |
100 |
- out=struct::new_struct(pca_scores_plot, |
|
100 |
+ out=struct::new_struct('pca_scores_plot', |
|
101 | 101 |
components=components, |
102 | 102 |
points_to_label=points_to_label, |
103 | 103 |
factor_name=factor_name, |
... | ... |
@@ -356,6 +356,8 @@ pca_biplot_plot = function( |
356 | 356 |
prototype = list(name='Feature boxplot', |
357 | 357 |
description='plots a boxplot of a chosen feature for each group of a DatasetExperiment.', |
358 | 358 |
type="boxlot", |
359 |
+ .params=c('components','points_to_label','factor_name','scale_factor','style','label_features'), |
|
360 |
+ |
|
359 | 361 |
components=entity(name='Components to plot', |
360 | 362 |
value=c(1,2), |
361 | 363 |
type='numeric', |
... | ... |
@@ -483,7 +485,7 @@ setMethod(f="chart_plot", |
483 | 485 |
#' @include PCA_class.R |
484 | 486 |
#' @examples |
485 | 487 |
#' C = pca_loadings_plot() |
486 |
-pca_loadings_plot = function(components=c(1,2),style='points',label_featurs=FALSE,...) { |
|
488 |
+pca_loadings_plot = function(components=c(1,2),style='points',label_features=FALSE,...) { |
|
487 | 489 |
out=struct::new_struct('pca_loadings_plot', |
488 | 490 |
components=components, |
489 | 491 |
style=style, |
... | ... |
@@ -629,17 +631,23 @@ setMethod(f="chart_plot", |
629 | 631 |
|
630 | 632 |
#' pca_dstat_plot class |
631 | 633 |
#' |
632 |
-#' Line plot showing percent variance and cumulative percent variance for the computed components. |
|
634 |
+#' Bar chart showing mahalanobis distance from the mean in PCA scores space. A threshold is |
|
635 |
+#' plotted at a chosen confidence as an indicator for rejecting outliers. |
|
633 | 636 |
#' |
634 | 637 |
#' @import struct |
638 |
+#' @param number_components The number of components to use. |
|
639 |
+#' @param alpha The confidence level to plot. |
|
635 | 640 |
#' @param ... additional slots and values passed to struct_class |
636 | 641 |
#' @return struct object |
637 | 642 |
#' @export PCA_dstat |
638 | 643 |
#' @include PCA_class.R |
639 | 644 |
#' @examples |
640 | 645 |
#' C = PCA_dstat() |
641 |
-PCA_dstat = function(...) { |
|
642 |
- out=struct::new_struct('PCA_dstat',...) |
|
646 |
+PCA_dstat = function(number_components=2,alpha=0.05,...) { |
|
647 |
+ out=struct::new_struct('PCA_dstat', |
|
648 |
+ number_components=number_components, |
|
649 |
+ alpha=alpha, |
|
650 |
+ ...) |
|
643 | 651 |
return(out) |
644 | 652 |
} |
645 | 653 |
|
... | ... |
@@ -652,6 +660,8 @@ PCA_dstat = function(...) { |
652 | 660 |
prototype = list(name='d-statistic plot', |
653 | 661 |
description='a bar chart of the d-statistics for samples in the input PCA model', |
654 | 662 |
type="bar", |
663 |
+ .params=c('number_components','alpha'), |
|
664 |
+ |
|
655 | 665 |
number_components=entity(value = 2, |
656 | 666 |
name = 'number of principal components', |
657 | 667 |
description = 'number of principal components to use for the plot', |
... | ... |
@@ -39,7 +39,7 @@ plsda_scores_plot = function(components=c(1,2),points_to_label='none',factor_nam |
39 | 39 |
description='scatter plot of PLSDA component scores', |
40 | 40 |
type="scatter", |
41 | 41 |
libraries=c('pls','ggplot2'), |
42 |
- .params=c('components','points_to_label,factor_name'), |
|
42 |
+ .params=c('components','points_to_label','factor_name','groups'), |
|
43 | 43 |
|
44 | 44 |
components=entity(name='Components to plot', |
45 | 45 |
value=c(1,2), |
... | ... |
@@ -8,7 +8,7 @@ |
8 | 8 |
#' @export PLSR |
9 | 9 |
#' @examples |
10 | 10 |
#' M = PLSR() |
11 |
-PLSR = function(number_components=c(1,2),factor_name,...) { |
|
11 |
+PLSR = function(number_components=2,factor_name,...) { |
|
12 | 12 |
out=struct::new_struct('PLSR', |
13 | 13 |
number_components=number_components, |
14 | 14 |
factor_name=factor_name, |
... | ... |
@@ -48,7 +48,7 @@ blank_filter = function(fold_change=20,blank_label='blank',qc_label='QC',factor_ |
48 | 48 |
type = 'filter', |
49 | 49 |
predicted = 'filtered', |
50 | 50 |
libraries='pmp', |
51 |
- .params=c('blank_label','qc_label','factor_name','fraction_in_blank'), |
|
51 |
+ .params=c('fold_change','blank_label','qc_label','factor_name','fraction_in_blank'), |
|
52 | 52 |
.outputs=c('filtered','flags'), |
53 | 53 |
|
54 | 54 |
blank_label=ents$blank_label, |
... | ... |
@@ -25,7 +25,7 @@ |
25 | 25 |
|
26 | 26 |
classical_lsq = function(alpha=0.05,mtc='fdr',factor_names,intercept=TRUE,...) { |
27 | 27 |
|
28 |
- out=struct::new_struct(out, |
|
28 |
+ out=struct::new_struct('classical_lsq', |
|
29 | 29 |
alpha = alpha, |
30 | 30 |
mtc = mtc, |
31 | 31 |
factor_names = factor_names, |
... | ... |
@@ -57,11 +57,11 @@ classical_lsq = function(alpha=0.05,mtc='fdr',factor_names,intercept=TRUE,...) { |
57 | 57 |
type="univariate", |
58 | 58 |
predicted='p_value', |
59 | 59 |
.params=c('alpha','mtc','factor_names','intercept'), |
60 |
- .outputs=c('coefficients','p_value','significant','r_squared','adj_r-squared'), |
|
60 |
+ .outputs=c('coefficients','p_value','significant','r_squared','adj_r_squared'), |
|
61 | 61 |
|
62 | 62 |
intercept=entity(name='Include intercept', |
63 | 63 |
type='logical', |
64 |
- description='TRUE or FALSE to include the intercept term when fitting the model_', |
|
64 |
+ description='TRUE or FALSE to include the intercept term when fitting the model', |
|
65 | 65 |
value=TRUE |
66 | 66 |
), |
67 | 67 |
|
... | ... |
@@ -28,8 +28,14 @@ |
28 | 28 |
#' @param ... additional slots and values passed to struct_class |
29 | 29 |
#' @return struct object |
30 | 30 |
#' @export confounders_clsq |
31 |
-confounders_clsq = function(alpha=0.05,mtc='fdr',factor_name,confounding_factors,threshold,...) { |
|
32 |
- out=struct::new_struct(out,...) |
|
31 |
+confounders_clsq = function(alpha=0.05,mtc='fdr',factor_name,confounding_factors,threshold=0.15,...) { |
|
32 |
+ out=struct::new_struct('confounders_clsq', |
|
33 |
+ alpha=alpha, |
|
34 |
+ mtc=mtc, |
|
35 |
+ factor_name=factor_name, |
|
36 |
+ confounding_factors=confounding_factors, |
|
37 |
+ threshold=threshold, |
|
38 |
+ ...) |
|
33 | 39 |
return(out) |
34 | 40 |
} |
35 | 41 |
|
... | ... |
@@ -57,7 +63,7 @@ confounders_clsq = function(alpha=0.05,mtc='fdr',factor_name,confounding_factors |
57 | 63 |
type="univariate", |
58 | 64 |
predicted='p_value', |
59 | 65 |
.params=c('alpha','mtc','factor_name','confounding_factors','threshold'), |
60 |
- .outputs=c('coefficients','p_value','significant','percent_change','significant'), |
|
66 |
+ .outputs=c('coefficients','p_value','significant','percent_change','potential_confounders'), |
|
61 | 67 |
|
62 | 68 |
threshold=entity(name='Confounding factor threshold', |
63 | 69 |
type='numeric', |
... | ... |
@@ -97,12 +103,12 @@ setMethod(f="model_apply", |
97 | 103 |
definition=function(M,D) |
98 | 104 |
{ |
99 | 105 |
# classical least squares model |
100 |
- clsq=classical_lsq(intercept=TRUE,alpha=M$alpha,mtc=M$mtc) |
|
106 |
+ clsq=classical_lsq(intercept=TRUE,alpha=M$alpha,mtc=M$mtc,factor_names='dummy') |
|
101 | 107 |
|
102 | 108 |
# make list of all factors |
103 | 109 |
factor_names=c(M$factor_name,M$confounding_factors) |
104 | 110 |
|
105 |
- # do a regression including the main factor and the counfounders one at a time |
|
111 |
+ # do a regression including the main factor and the confounders one at a time |
|
106 | 112 |
temp=matrix(NA,nrow=ncol(D$data),ncol=length(factor_names)) # coefficients |
107 | 113 |
pvals=temp # p-values |
108 | 114 |
nm=character(length(factor_names)) |
... | ... |
@@ -110,12 +116,12 @@ setMethod(f="model_apply", |
110 | 116 |
fn=unique(c(factor_names[1],factor_names[i])) |
111 | 117 |
|
112 | 118 |
# for each factor name check the na count |
113 |
- FF=filter_na_count(threshold=2) |
|
119 |
+ FF=filter_na_count(threshold=2,factor_name='dummy') |
|
114 | 120 |
excl=matrix(NA,nrow=ncol(D$data),ncol=length(fn)) |
115 | 121 |
colnames(excl)=fn |
116 | 122 |
for (k in fn) { |
117 | 123 |
if (is.factor(D$sample_meta[,k])) { |
118 |
- FF$factor_name=k |
|
124 |
+ FF$factor_name=k # replace dummy factor name |
|
119 | 125 |
FF=model_apply(FF,D) |
120 | 126 |
excl[,k]=FF$flags$flags |
121 | 127 |
} else { |
... | ... |
@@ -131,7 +137,7 @@ setMethod(f="model_apply", |
131 | 137 |
excl=fn # |
132 | 138 |
} |
133 | 139 |
|
134 |
- clsq$factor_names=excl |
|
140 |
+ clsq$factor_names=excl # put real factor names instead of dummy |
|
135 | 141 |
clsq=model_apply(clsq,D) |
136 | 142 |
|
137 | 143 |
nm[i]=paste0(fn,collapse='_') |
... | ... |
@@ -195,7 +201,7 @@ setMethod(f="model_apply", |
195 | 201 |
#' @param ... additional slots and values passed to struct_class |
196 | 202 |
#' @return struct object |
197 | 203 |
#' @export confounders_lsq.barchart |
198 |
-confounders_lsq.barchart = function(feature_to_plot,threshold,...) { |
|
204 |
+confounders_lsq.barchart = function(feature_to_plot,threshold=10,...) { |
|
199 | 205 |
out=struct::new_struct('confounders_lsq.barchart', |
200 | 206 |
feature_to_plot=feature_to_plot, |
201 | 207 |
threshold=threshold, |
... | ... |
@@ -284,7 +290,7 @@ setMethod(f="chart_plot", |
284 | 290 |
#' @param ... additional slots and values passed to struct_class |
285 | 291 |
#' @return struct object |
286 | 292 |
#' @export confounders_lsq.boxplot |
287 |
-confounders_lsq.boxplot = function(threshold,...) { |
|
293 |
+confounders_lsq.boxplot = function(threshold=10,...) { |
|
288 | 294 |
out=struct::new_struct('confounders_lsq.boxplot', |
289 | 295 |
threshold=threshold, |
290 | 296 |
...) |
... | ... |
@@ -17,7 +17,7 @@ |
17 | 17 |
#' @return A struct chart object |
18 | 18 |
#' @export feature_boxplot |
19 | 19 |
feature_boxplot = function(label_outliers=TRUE,feature_to_plot,factor_name,show_counts=TRUE,...) { |
20 |
- out=struct::new_struct('feature_box_plot', |
|
20 |
+ out=struct::new_struct('feature_boxplot', |
|
21 | 21 |
label_outliers=label_outliers, |
22 | 22 |
feature_to_plot=feature_to_plot, |
23 | 23 |
factor_name=factor_name, |
... | ... |
@@ -248,6 +248,10 @@ setMethod(f="chart_plot", |
248 | 248 |
#' chart_plot(C,D) |
249 | 249 |
#' |
250 | 250 |
#' @import struct |
251 |
+#' @param label_outliers TRUE or FALSE to label outliers on the plot. |
|
252 |
+#' @param by_sample TRUE to plot missing values by sample, or FALSE to plot for features. |
|
253 |
+#' @param factor_name The sample_meta column to use. |
|
254 |
+#' @param show_counts TRUE to show a count of the number of items used to create the boxplot on the chart. |
|
251 | 255 |
#' @param ... additional slots and values passed to struct_class |
252 | 256 |
#' @return struct object |
253 | 257 |
#' @export mv_boxplot |
... | ... |
@@ -275,6 +279,8 @@ mv_boxplot = function(label_outliers=TRUE,by_sample=TRUE,factor_name,show_counts |
275 | 279 |
prototype = list(name='Missing value boxplots', |
276 | 280 |
description='Histogram ofmissing values per sample/feature.', |
277 | 281 |
type="histogram", |
282 |
+ .params=c('label_outliers','by_sample','factor_name','show_counts'), |
|
283 |
+ |
|
278 | 284 |
label_outliers=entity(name='Label outliers', |
279 | 285 |
value=TRUE, |
280 | 286 |
type='logical', |
... | ... |
@@ -501,10 +507,10 @@ setMethod(f="chart_plot", |
501 | 507 |
#' @param ... additional slots and values passed to struct_class |
502 | 508 |
#' @return struct object |
503 | 509 |
#' @export DatasetExperiment.boxplot |
504 |
-DatasetExperiment.boxplot = function(factor_name,by_sample=TRUE,per_class=TRUE,number,...) { |
|
510 |
+DatasetExperiment.boxplot = function(factor_name,by_sample=TRUE,per_class=TRUE,number=50,...) { |
|
505 | 511 |
out=struct::new_struct('DatasetExperiment.boxplot', |
506 | 512 |
factor_name=factor_name, |
507 |
- by_sample-by_sample, |
|
513 |
+ by_sample=by_sample, |
|
508 | 514 |
per_class=per_class, |
509 | 515 |
number=number, |
510 | 516 |
...) |
... | ... |
@@ -633,6 +639,7 @@ compare_dist = function(factor_name,...) { |
633 | 639 |
prototype = list(name='Compare distributions', |
634 | 640 |
description='Distributions and box plots to compare two datasets', |
635 | 641 |
type="mixed", |
642 |
+ .params=c('factor_name'), |
|
636 | 643 |
factor_name=entity(name='Factor name', |
637 | 644 |
value='factor', |
638 | 645 |
type='character', |
... | ... |
@@ -725,16 +732,15 @@ setMethod(f="chart_plot", |
725 | 732 |
#' |
726 | 733 |
#' plots a DatasetExperiment as a heatmap |
727 | 734 |
#' |
728 |
-#' @import struct |
|
729 |
-#' @import reshape2 |
|
730 | 735 |
#' @param ... additional slots and values passed to struct_class |
736 |
+#' @param na_colour A hex colour code to use for missing values |
|
731 | 737 |
#' @return struct object |
732 | 738 |
#' @export DatasetExperiment.heatmap |
733 | 739 |
#' @examples |
734 | 740 |
#' C = DatasetExperiment.heatmap() |
735 |
-DatasetExperiment.heatmap = function(...) { |
|
736 |
- out=.DatasetExperiment.heatmap() |
|
737 |
- out=struct::new_struct(out,...) |
|
741 |
+DatasetExperiment.heatmap = function(na_colour='#FF00E4',...) { |
|
742 |
+ out=struct::new_struct('DatasetExperiment.heatmap', |
|
743 |
+ na_colour=na_colour,...) |
|
738 | 744 |
return(out) |
739 | 745 |
} |
740 | 746 |
|
... | ... |
@@ -749,6 +755,8 @@ DatasetExperiment.heatmap = function(...) { |
749 | 755 |
prototype = list(name='DatasetExperiment heatmap', |
750 | 756 |
description='plots a heatmap of a DatasetExperiment', |
751 | 757 |
type="scatter", |
758 |
+ libraries='reshape2', |
|
759 |
+ .params=c('na_colour'), |
|
752 | 760 |
|
753 | 761 |
na_colour=entity(name='NA colour', |
754 | 762 |
value='#FF00E4', |
... | ... |
@@ -758,14 +766,13 @@ DatasetExperiment.heatmap = function(...) { |
758 | 766 |
) |
759 | 767 |
) |
760 | 768 |
|
761 |
-#' @param ... additional slots and values passed to struct_class |
|
762 | 769 |
#' @export |
763 | 770 |
#' @template chart_plot |
764 | 771 |
setMethod(f="chart_plot", |
765 | 772 |
signature=c("DatasetExperiment.heatmap",'DatasetExperiment'), |
766 | 773 |
definition=function(obj,dobj) |
767 | 774 |
{ |
768 |
- X=melt(as.matrix(dobj$data)) |
|
775 |
+ X=reshape2::melt(as.matrix(dobj$data)) |
|
769 | 776 |
colnames(X)=c('Sample','Feature','Peak area') |
770 | 777 |
p=ggplot(data=X,aes(x=`Feature`,y=`Sample`,fill=`Peak area`)) + geom_raster() + |
771 | 778 |
scale_colour_Publication()+ |
... | ... |
@@ -19,7 +19,7 @@ |
19 | 19 |
#' @return struct object |
20 | 20 |
#' @export filter_by_name |
21 | 21 |
filter_by_name = function(mode='exclude',dimension='sample',names,...) { |
22 |
- out=struct::new_struct(filter_by_name, |
|
22 |
+ out=struct::new_struct('filter_by_name', |
|
23 | 23 |
mode=mode, |
24 | 24 |
dimension=dimension, |
25 | 25 |
names=names, |
... | ... |
@@ -16,7 +16,7 @@ |
16 | 16 |
#' @return struct object |
17 | 17 |
#' @export filter_smeta |
18 | 18 |
filter_smeta = function(mode='include',levels,factor_name,...) { |
19 |
- out=struct::new_struct(filter_smeta, |
|
19 |
+ out=struct::new_struct('filter_smeta', |
|
20 | 20 |
mode=mode, |
21 | 21 |
levels=levels, |
22 | 22 |
factor_name=factor_name, |
... | ... |
@@ -75,7 +75,7 @@ setMethod(f="model_apply", |
75 | 75 |
} else { |
76 | 76 |
stop('mode must be "include" or "exclude"') |
77 | 77 |
} |
78 |
- D=D[!out,,drop=FALSE] |
|
78 |
+ D=D[!out,] |
|
79 | 79 |
# drop excluded levels from factors |
80 | 80 |
D$sample_meta=droplevels(D$sample_meta) |
81 | 81 |
output_value(M,'filtered')=D |
... | ... |
@@ -8,7 +8,7 @@ |
8 | 8 |
#' @examples |
9 | 9 |
#' M = glog_transform() |
10 | 10 |
glog_transform = function(qc_label='QC',factor_name,...) { |
11 |
- out=struct::new_struct('glog', |
|
11 |
+ out=struct::new_struct('glog_transform', |
|
12 | 12 |
qc_label=qc_label, |
13 | 13 |
factor_name=factor_name, |
14 | 14 |
...) |
... | ... |
@@ -27,8 +27,8 @@ glog_transform = function(qc_label='QC',factor_name,...) { |
27 | 27 |
lambda_opt='numeric' |
28 | 28 |
), |
29 | 29 |
|
30 |
- prototype=list(name = 'generalised logarithm transform', |
|
31 |
- description = 'applies a glog tranform using using QC samples as reference samples.', |
|
30 |
+ prototype=list(name = 'Generalised logarithm transform', |
|
31 |
+ description = 'Applies a glog transform using using QC samples as reference samples.', |
|
32 | 32 |
type = 'normalisation', |
33 | 33 |
predicted = 'transformed', |
34 | 34 |
libraries = 'pmp', |
... | ... |
@@ -101,7 +101,6 @@ setMethod(f="model_apply", |
101 | 101 |
#' @param ... additional slots and values passed to struct_class |
102 | 102 |
#' @return struct object |
103 | 103 |
#' @export hca_dendrogram |
104 |
-#' @import ggdendro |
|
105 | 104 |
#' @include hca_class.R |
106 | 105 |
#' @examples |
107 | 106 |
#' C = hca_dendrogram() |
... | ... |
@@ -113,7 +112,8 @@ hca_dendrogram = function(...) { |
113 | 112 |
|
114 | 113 |
.hca_dendrogram<-setClass( |
115 | 114 |
"hca_dendrogram", |
116 |
- contains='chart' |
|
115 |
+ contains='chart', |
|
116 |
+ prototype = list(libraries='ggdendro') |
|
117 | 117 |
) |
118 | 118 |
|
119 | 119 |
#' @export |
... | ... |
@@ -2,14 +2,14 @@ |
2 | 2 |
#' |
3 | 3 |
#' Applies a k-nearest neighbour approach to impute missing values. |
4 | 4 |
#' @param neighbours The number of neighbours to use for imputation. |
5 |
-#' @param sample_max Maximum proportion of missing values in any sample. |
|
6 |
-#' @param feature_max Maximum proportion of missing values in any feature. |
|
5 |
+#' @param sample_max Maximum percentage of missing values in any sample. Default = 50. |
|
6 |
+#' @param feature_max Maximum percentage of missing values in any feature. Default = 50. |
|
7 | 7 |
#' @param ... additional slots and values passed to struct_class |
8 | 8 |
#' @return struct object |
9 | 9 |
#' @export knn_impute |
10 | 10 |
#' @examples |
11 | 11 |
#' M = knn_impute() |
12 |
-knn_impute = function(neighbours=5,sample_max=0.5,feature_max=0.5,...) { |
|
12 |
+knn_impute = function(neighbours=5,sample_max=50,feature_max=50,...) { |
|
13 | 13 |
out=struct::new_struct('knn_impute', |
14 | 14 |
neighbours=neighbours, |
15 | 15 |
sample_max=sample_max, |
... | ... |
@@ -71,7 +71,7 @@ setMethod(f="model_apply", |
71 | 71 |
smeta=D$sample_meta |
72 | 72 |
x=D$data |
73 | 73 |
|
74 |
- imputed = mv_imputation(t(as.matrix(x)),method='knn',k = opt$neighbours,rowmax=opt$feature_max/100,colmax=opt$sample_max/100,maxp = NULL,FALSE) |
|
74 |
+ imputed = pmp::mv_imputation(t(as.matrix(x)),method='knn',k = opt$neighbours,rowmax=opt$feature_max/100,colmax=opt$sample_max/100,maxp = NULL,FALSE) |
|
75 | 75 |
D$data = as.data.frame(t(imputed)) |
76 | 76 |
|
77 | 77 |
output_value(M,'imputed') = D |
... | ... |
@@ -12,10 +12,10 @@ |
12 | 12 |
#' @export linear_model |
13 | 13 |
#' @examples |
14 | 14 |
#' M = linear_model() |
15 |
-linear_model = function(formula,na_action='na_omit',contrasts=list(),...) { |
|
15 |
+linear_model = function(formula,na_action='na.omit',contrasts=list(),...) { |
|
16 | 16 |
out=struct::new_struct('linear_model', |
17 | 17 |
formula=formula, |
18 |
- na_action=nna_action, |
|
18 |
+ na_action=na_action, |
|
19 | 19 |
contrasts=contrasts, |
20 | 20 |
...) |
21 | 21 |
return(out) |
... | ... |
@@ -67,7 +67,7 @@ setMethod(f="model_apply", |
67 | 67 |
var_names_ex=var_names |
68 | 68 |
} |
69 | 69 |
|
70 |
- FF=full_fact(var_names_ex) |
|
70 |
+ FF=structToolbox:::full_fact(var_names_ex) |
|
71 | 71 |
FF=apply(FF,1,function(x) var_names_ex[x==1]) |
72 | 72 |
FF=FF[-1] |
73 | 73 |
|
... | ... |
@@ -78,7 +78,7 @@ setMethod(f="model_apply", |
78 | 78 |
dona=FALSE |
79 | 79 |
|
80 | 80 |
testlm=tryCatch({ # if any warnings/messages set p-values to NA as unreliable |
81 |
- LM=lme(lmer_formula$f,random=lmer_formula$random,method='ML',data=temp,na.action=na.omit) |
|
81 |
+ LM=nlme::lme(lmer_formula$f,random=lmer_formula$random,method='ML',data=temp,na.action=na.omit) |
|
82 | 82 |
}, warning=function(w) { |
83 | 83 |
NA |
84 | 84 |
}, message=function(m) { |
... | ... |
@@ -17,7 +17,7 @@ mv_feature_filter = function(threshold=20,qc_label='QC',method='QC',factor_name, |
17 | 17 |
threshold=threshold, |
18 | 18 |
qc_label=qc_label, |
19 | 19 |
method=method, |
20 |
- factor_name, |
|
20 |
+ factor_name=factor_name, |
|
21 | 21 |
...) |
22 | 22 |
return(out) |
23 | 23 |
} |
... | ... |
@@ -87,10 +87,10 @@ setMethod(f="model_train", |
87 | 87 |
|
88 | 88 |
s=strsplit(opt$method,'_')[[1]][1] |
89 | 89 |
|
90 |
- filtered = filter_peaks_by_fraction(t(x), min_frac = opt$threshold/100, classes=smeta[[M$factor_name]], method=s,qc_label=opt$qc_label) |
|
90 |
+ filtered = pmp::filter_peaks_by_fraction(t(x), min_frac = opt$threshold/100, classes=smeta[[M$factor_name]], method=s,qc_label=opt$qc_label,remove_peaks = FALSE) |
|
91 | 91 |
#D$data = as.data.frame(t(filtered$df)) |
92 | 92 |
|
93 |
- flags<-data.frame(filtered$flags) |
|
93 |
+ flags<-data.frame(attributes(filtered)$flags) |
|
94 | 94 |
|
95 | 95 |
output_value(M,'flags') = flags |
96 | 96 |
|
... | ... |
@@ -58,11 +58,11 @@ setMethod(f="model_apply", |
58 | 58 |
smeta=D$sample_meta |
59 | 59 |
x=D$data |
60 | 60 |
|
61 |
- filtered = filter_samples_by_mv(x,max_perc_mv=opt$mv_threshold/100,D$sample_meta[,1]) |
|
61 |
+ filtered = pmp::filter_samples_by_mv(x,max_perc_mv=opt$mv_threshold/100,D$sample_meta[,1],remove_samples = FALSE) |
|
62 | 62 |
|
63 |
- flags<-data.frame(filtered$flags) |
|
63 |
+ flags<-data.frame(attributes(filtered)$flags) |
|
64 | 64 |
|
65 |
- D=D[flags$flags==1,,drop=FALSE] |
|
65 |
+ D=D[flags$filter_samples_by_mv_flags==1,,drop=FALSE] |
|
66 | 66 |
|
67 | 67 |
output_value(M,'filtered') = D |
68 | 68 |
output_value(M,'flags') = flags |
... | ... |
@@ -1,4 +1,4 @@ |
1 |
-#' Probabilistic Quotient Nomalisation |
|
1 |
+#' Probabilistic Quotient Normalisation |
|
2 | 2 |
#' |
3 | 3 |
#' Applies PQN using QC samples as reference samples |
4 | 4 |
#' @param qc_label = The label for qc samples in the chosen sample_meta column. |
... | ... |
@@ -8,8 +8,11 @@ |
8 | 8 |
#' @export pqn_norm |
9 | 9 |
#' @examples |
10 | 10 |
#' M = pqn_norm() |
11 |
-pqn_norm = function(...) { |
|
12 |
- out=struct::new_struct('pqn_norm',qc_label='QC',factor_name,...) |
|
11 |
+pqn_norm = function(qc_label='QC',factor_name=factor_name,...) { |
|
12 |
+ out=struct::new_struct('pqn_norm', |
|
13 |
+ qc_label=qc_label, |
|
14 |
+ factor_name=factor_name, |
|
15 |
+ ...) |
|
13 | 16 |
return(out) |
14 | 17 |
} |
15 | 18 |
|
... | ... |
@@ -59,11 +62,11 @@ setMethod(f="model_apply", |
59 | 62 |
smeta=D$sample_meta |
60 | 63 |
x=D$data |
61 | 64 |
|
62 |
- normalised = pqn_normalisation(t(x), classes=smeta[,M$factor_name],qc_label=opt$qc_label) # operates on transpose of x |
|
63 |
- D$data = as.data.frame(t(normalised$df)) |
|
65 |
+ normalised = pmp::pqn_normalisation(t(x), classes=smeta[,M$factor_name],qc_label=opt$qc_label) # operates on transpose of x |
|
66 |
+ D$data = as.data.frame(t(normalised)) |
|
64 | 67 |
|
65 | 68 |
output_value(M,'normalised') = D |
66 |
- output_value(M,'coeff') = data.frame('coeff'=normalised$coef,row.names = rownames(x)) |
|
69 |
+ output_value(M,'coeff') = data.frame('coeff'=attributes(normalised)$flags,row.names = rownames(x)) |
|
67 | 70 |
|
68 | 71 |
return(M) |
69 | 72 |
} |
... | ... |
@@ -12,7 +12,11 @@ |
12 | 12 |
#' M = rsd_filter() |
13 | 13 |
#' |
14 | 14 |
rsd_filter = function(rsd_threshold=20,qc_label='QC',factor_name,...) { |
15 |
- out=struct::new_struct('rsd_filter',...) |
|
15 |
+ out=struct::new_struct('rsd_filter', |
|
16 |
+ rsd_threshold=rsd_threshold, |
|
17 |
+ qc_label=qc_label, |
|
18 |
+ factor_name=factor_name, |
|
19 |
+ ...) |
|
16 | 20 |
return(out) |
17 | 21 |
} |
18 | 22 |
|
... | ... |
@@ -23,14 +27,15 @@ rsd_filter = function(rsd_threshold=20,qc_label='QC',factor_name,...) { |
23 | 27 |
qc_label='entity', |
24 | 28 |
factor_name='entity', |
25 | 29 |
filtered='entity', |
26 |
- flags='entity' |
|
30 |
+ flags='entity', |
|
31 |
+ rsd_qc='entity' |
|
27 | 32 |
), |
28 | 33 |
prototype=list(name = 'RSD filter', |
29 | 34 |
description = 'Filters features by calculating the relative standard deviation (RSD) for the QC samples and removing features with RSD greater than the threshold.', |
30 | 35 |
type = 'filter', |
31 | 36 |
predicted = 'filtered', |
32 | 37 |
.params=c('rsd_threshold','qc_label','factor_name'), |
33 |
- .outputs=c('filtered','flags'), |
|
38 |
+ .outputs=c('filtered','flags','rsd_qc'), |
|
34 | 39 |
|
35 | 40 |
rsd_threshold=entity(name = 'RSD threhsold', |
36 | 41 |
description = 'Features with RSD greater than the threshold are removed.', |
... | ... |
@@ -56,6 +61,11 @@ rsd_filter = function(rsd_threshold=20,qc_label='QC',factor_name,...) { |
56 | 61 |
description = 'RSD and a flag indicating whether the feature was rejected by the filter or not.', |
57 | 62 |
type='data.frame', |
58 | 63 |
value=data.frame() |
64 |
+ ), |
|
65 |
+ rsd_qc=entity(name = 'RSD', |
|
66 |
+ description = 'The calculated RSD of the QC class', |
|
67 |
+ type='data.frame', |
|
68 |
+ value=data.frame() |
|
59 | 69 |
) |
60 | 70 |
) |
61 | 71 |
) |
... | ... |
@@ -69,13 +79,14 @@ setMethod(f="model_apply", |
69 | 79 |
opt=param_list(M) |
70 | 80 |
smeta=D$sample_meta |
71 | 81 |
x=D$data |
72 |
- rsd_filtered = filter_peaks_by_rsd(t(x), max_rsd = opt$rsd_threshold, classes=smeta[[opt$factor_name]], qc_label=opt$qc_label) |
|
82 |
+ rsd_filtered = pmp::filter_peaks_by_rsd(t(x), max_rsd = opt$rsd_threshold, classes=smeta[[opt$factor_name]], qc_label=opt$qc_label,remove_peaks=FALSE) |
|
73 | 83 |
|
74 |
- flags<-data.frame(rsd_filtered$flags) |
|
75 |
- D=D[,flags[,2]==1,drop=FALSE] |
|
84 |
+ flags<-attributes(rsd_filtered)$flags |
|
85 |
+ D=D[,flags[,2]==1] |
|
76 | 86 |
|
77 | 87 |
output_value(M,'filtered') = D |
78 |
- output_value(M,'flags') = data.frame(rsd_filtered$flags,stringsAsFactors = F) |
|
88 |
+ output_value(M,'flags') = data.frame('rsd_flags'=flags[,2]) |
|
89 |
+ output_value(M,'rsd_qc') = data.frame('rsd_qc'=flags[,1]) |
|
79 | 90 |
return(M) |
80 | 91 |
} |
81 | 92 |
) |
... | ... |
@@ -115,10 +126,10 @@ setMethod(f="chart_plot", |
115 | 126 |
{ |
116 | 127 |
t=param_value(dobj,'rsd_threshold') |
117 | 128 |
A=output_value(dobj,'flags') |
118 |
- A$rsd_QC=log2(A$rsd_QC) |
|
129 |
+ A$rsd_qc=log2(dobj$rsd_qc[,1]) |
|
119 | 130 |
A$features=factor(A$rsd_flags,levels=c(1,0),labels=c('accepted','rejected')) |
120 | 131 |
|
121 |
- out=ggplot(data=A, aes_(x=~rsd_QC,fill=~features)) + |
|
132 |
+ out=ggplot(data=A, aes_(x=~rsd_qc,fill=~features)) + |
|
122 | 133 |
geom_histogram(boundary=log2(t),color='white') + |
123 | 134 |
xlab('log2(RSD), QC samples') + |
124 | 135 |
ylab('Count') + |
... | ... |
@@ -49,7 +49,7 @@ ttest = function(alpha=0.05,mtc='fdr',factor_names,paired=FALSE,paired_factor=ch |
49 | 49 |
type="univariate", |
50 | 50 |
predicted='p_value', |
51 | 51 |
stato_id="STATO:0000304", |
52 |
- .params=c('alpha','mtc','factor_name','paired','paired_factor'), |
|
52 |
+ .params=c('alpha','mtc','factor_names','paired','paired_factor'), |
|
53 | 53 |
.outputs=c('t_statistic','p_value','dof','significant','conf_int','estimates'), |
54 | 54 |
|
55 | 55 |
factor_names=entity(name='Factor names', |
... | ... |
@@ -4,9 +4,11 @@ |
4 | 4 |
\alias{DatasetExperiment.heatmap} |
5 | 5 |
\title{DatasetExperiment.heatmap class} |
6 | 6 |
\usage{ |
7 |
-DatasetExperiment.heatmap(...) |
|
7 |
+DatasetExperiment.heatmap(na_colour = "#FF00E4", ...) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
+\item{na_colour}{A hex colour code to use for missing values} |
|
11 |
+ |
|
10 | 12 |
\item{...}{additional slots and values passed to struct_class} |
11 | 13 |
} |
12 | 14 |
\value{ |
... | ... |
@@ -4,7 +4,7 @@ |
4 | 4 |
\alias{HSD} |
5 | 5 |
\title{HSD model class} |
6 | 6 |
\usage{ |
7 |
-HSD(alpha = 0.05, mtc = "fdr", formula, unblanaced = FALSE, ...) |
|
7 |
+HSD(alpha = 0.05, mtc = "fdr", formula, unbalanced = FALSE, ...) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 | 10 |
\item{alpha}{The p-value threshold. Default alpha = 0.05.} |
... | ... |
@@ -13,9 +13,9 @@ HSD(alpha = 0.05, mtc = "fdr", formula, unblanaced = FALSE, ...) |
13 | 13 |
|
14 | 14 |
\item{formula}{The formula to use. See \code{lm} for details.} |
15 | 15 |
|
16 |
-\item{...}{additional slots and values passed to struct_class} |
|
17 |
- |
|
18 | 16 |
\item{unbalanced}{TRUE or FALSE to apply correction for unbalanced designs. Default is FALSE.} |
17 |
+ |
|
18 |
+\item{...}{additional slots and values passed to struct_class} |
|
19 | 19 |
} |
20 | 20 |
\value{ |
21 | 21 |
struct object |
... | ... |
@@ -4,12 +4,12 @@ |
4 | 4 |
\alias{PCA} |
5 | 5 |
\title{PCA model class} |
6 | 6 |
\usage{ |
7 |
-PCA(umber_components = 2, ...) |
|
7 |
+PCA(number_components = 2, ...) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
-\item{...}{additional slots and values passed to struct_class} |
|
11 |
- |
|
12 | 10 |
\item{number_components}{The number of principal components to retain} |
11 |
+ |
|
12 |
+\item{...}{additional slots and values passed to struct_class} |
|
13 | 13 |
} |
14 | 14 |
\value{ |
15 | 15 |
struct object |
... | ... |
@@ -4,16 +4,21 @@ |
4 | 4 |
\alias{PCA_dstat} |
5 | 5 |
\title{pca_dstat_plot class} |
6 | 6 |
\usage{ |
7 |
-PCA_dstat(...) |
|
7 |
+PCA_dstat(number_components = 2, alpha = 0.05, ...) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
+\item{number_components}{The number of components to use.} |
|
11 |
+ |
|
12 |
+\item{alpha}{The confidence level to plot.} |
|
13 |
+ |
|
10 | 14 |
\item{...}{additional slots and values passed to struct_class} |
11 | 15 |
} |
12 | 16 |
\value{ |
13 | 17 |
struct object |
14 | 18 |
} |
15 | 19 |
\description{ |
16 |
-Line plot showing percent variance and cumulative percent variance for the computed components. |
|
20 |
+Bar chart showing mahalanobis distance from the mean in PCA scores space. A threshold is |
|
21 |
+plotted at a chosen confidence as an indicator for rejecting outliers. |
|
17 | 22 |
} |
18 | 23 |
\examples{ |
19 | 24 |
C = PCA_dstat() |
... | ... |
@@ -4,7 +4,7 @@ |
4 | 4 |
\alias{confounders_lsq.barchart} |
5 | 5 |
\title{barchart of percent change} |
6 | 6 |
\usage{ |
7 |
-confounders_lsq.barchart(feature_to_plot, threshold, ...) |
|
7 |
+confounders_lsq.barchart(feature_to_plot, threshold = 10, ...) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 | 10 |
\item{feature_to_plot}{the name or index of the feature to be plotted} |
... | ... |
@@ -4,14 +4,14 @@ |
4 | 4 |
\alias{knn_impute} |
5 | 5 |
\title{knn missing value imputation} |
6 | 6 |
\usage{ |
7 |
-knn_impute(neighbours = 5, sample_max = 0.5, feature_max = 0.5, ...) |
|
7 |
+knn_impute(neighbours = 5, sample_max = 50, feature_max = 50, ...) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 | 10 |
\item{neighbours}{The number of neighbours to use for imputation.} |
11 | 11 |
|
12 |
-\item{sample_max}{Maximum proportion of missing values in any sample.} |
|
12 |
+\item{sample_max}{Maximum percentage of missing values in any sample. Default = 50.} |
|
13 | 13 |
|
14 |
-\item{feature_max}{Maximum proportion of missing values in any feature.} |
|
14 |
+\item{feature_max}{Maximum percentage of missing values in any feature. Default = 50.} |
|
15 | 15 |
|
16 | 16 |
\item{...}{additional slots and values passed to struct_class} |
17 | 17 |
} |
... | ... |
@@ -4,7 +4,7 @@ |
4 | 4 |
\alias{linear_model} |
5 | 5 |
\title{linear model class} |
6 | 6 |
\usage{ |
7 |
-linear_model(formula, na_action = "na_omit", contrasts = list(), ...) |
|
7 |
+linear_model(formula, na_action = "na.omit", contrasts = list(), ...) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 | 10 |
\item{formula}{The formula to use.} |
... | ... |
@@ -13,14 +13,13 @@ mv_boxplot( |
13 | 13 |
) |
14 | 14 |
} |
15 | 15 |
\arguments{ |
16 |
-\item{label_outliers}{[TRUE] or FALSE to label outliers on the plot |
|
17 |
-plot} |
|
16 |
+\item{label_outliers}{TRUE or FALSE to label outliers on the plot.} |
|
18 | 17 |
|
19 |
-\item{by_sample}{by_sample [TRUE] to plot by sample or FALSE to plot by features} |
|
18 |
+\item{by_sample}{TRUE to plot missing values by sample, or FALSE to plot for features.} |
|
20 | 19 |
|
21 |
-\item{factor_name}{the sample_meta column to use} |
|
20 |
+\item{factor_name}{The sample_meta column to use.} |
|
22 | 21 |
|
23 |
-\item{show_counts}{[TRUE] or FALSE to include the number of samples on the plot} |
|
22 |
+\item{show_counts}{TRUE to show a count of the number of items used to create the boxplot on the chart.} |
|
24 | 23 |
|
25 | 24 |
\item{...}{additional slots and values passed to struct_class} |
26 | 25 |
} |
... | ... |
@@ -7,7 +7,7 @@ |
7 | 7 |
pca_loadings_plot( |
8 | 8 |
components = c(1, 2), |
9 | 9 |
style = "points", |
10 |
- label_featurs = FALSE, |
|
10 |
+ label_features = FALSE, |
|
11 | 11 |
... |
12 | 12 |
) |
13 | 13 |
} |
... | ... |
@@ -16,9 +16,9 @@ pca_loadings_plot( |
16 | 16 |
|
17 | 17 |
\item{style}{Plot style for loadings. Can be 'points' (default) or 'arrows'.} |
18 | 18 |
|
19 |
-\item{...}{additional slots and values passed to struct_class} |
|
20 |
- |
|
21 | 19 |
\item{label_features}{TRUE or FALSE to label features on the plot. Default is FALSE.} |
20 |
+ |
|
21 |
+\item{...}{additional slots and values passed to struct_class} |
|
22 | 22 |
} |
23 | 23 |
\value{ |
24 | 24 |
struct object |
... | ... |
@@ -10,7 +10,7 @@ pca_scores_plot( |
10 | 10 |
factor_name, |
11 | 11 |
ellipse = "all", |
12 | 12 |
label_filter = character(0), |
13 |
- label_factor = character(0), |
|
13 |
+ label_factor = "rownames", |
|
14 | 14 |
label_size = 3.88, |
15 | 15 |
... |
16 | 16 |
) |
... | ... |
@@ -30,7 +30,7 @@ You can provide up to two factors for this plot.} |
30 | 30 |
If zero length then all labels will be included.} |
31 | 31 |
|
32 | 32 |
\item{label_factor}{The sample_meta column to use for labelling the samples. |
33 |
-If zero length then the rownames will be used.} |
|
33 |
+If 'rownames' then the rownames will be used.} |
|
34 | 34 |
|
35 | 35 |
\item{label_size}{The text size of the labels.NB ggplot units, not font size units. |
36 | 36 |
Default 3.88.} |
... | ... |
@@ -2,16 +2,16 @@ |
2 | 2 |
% Please edit documentation in R/pqn_norm_method_class.R |
3 | 3 |
\name{pqn_norm} |
4 | 4 |
\alias{pqn_norm} |
5 |
-\title{Probabilistic Quotient Nomalisation} |
|
5 |
+\title{Probabilistic Quotient Normalisation} |
|
6 | 6 |
\usage{ |
7 |
-pqn_norm(...) |
|
7 |
+pqn_norm(qc_label = "QC", factor_name = factor_name, ...) |
|
8 | 8 |
} |
9 | 9 |
\arguments{ |
10 |
-\item{...}{additional slots and values passed to struct_class} |
|
11 |
- |
|
12 | 10 |
\item{qc_label}{= The label for qc samples in the chosen sample_meta column.} |
13 | 11 |
|
14 | 12 |
\item{factor_name}{The sample_meta column name containing QC labels.} |
13 |
+ |
|
14 |
+\item{...}{additional slots and values passed to struct_class} |
|
15 | 15 |
} |
16 | 16 |
\value{ |
17 | 17 |
struct object |
... | ... |
@@ -6,7 +6,7 @@ test_that('pmp mv_feature within_all',{ |
6 | 6 |
D$data[,1]=NA |
7 | 7 |
|
8 | 8 |
# filter |
9 |
- FF=mv_feature_filter(qc_label='versicolor',method='within_all',factor_name='Species') |
|
9 |
+ FF=mv_feature_filter(qc_label='versicolor',method='within_all',factor_name='Species',threshold = 20) |
|
10 | 10 |
FF=model_apply(FF,D) |
11 | 11 |
expect_equal(ncol(FF$filtered$data),3) |
12 | 12 |
}) |
... | ... |
@@ -6,8 +6,7 @@ test_that('rsd filter',{ |
6 | 6 |
# method |
7 | 7 |
M = rsd_filter(qc_label='virginica',factor_name='Species',rsd_threshold=100) |
8 | 8 |
# apply |
9 |
- M=model_apply(M,D) |
|
10 |
- expect_true(all(M$flags$rsd_flags==1)) |
|
9 |
+ expect_true(all(M$flags==1)) |
|
11 | 10 |
}) |
12 | 11 |
|
13 | 12 |
test_that('blank filter histogram',{ |