... | ... |
@@ -56,7 +56,7 @@ M = model_apply(M,D) |
56 | 56 |
|
57 | 57 |
} |
58 | 58 |
\references{ |
59 |
-R Core Team (2023). \emph{R: A Language and Environment for Statistical |
|
59 |
+R Core Team (2024). \emph{R: A Language and Environment for Statistical |
|
60 | 60 |
Computing}. R Foundation for Statistical Computing, Vienna, Austria. |
61 | 61 |
\url{https://www.R-project.org/}. |
62 | 62 |
} |
- due to changes in struct (removal of unicode)
... | ... |
@@ -40,7 +40,7 @@ This object makes use of functionality from the following packages:\itemize{ \i |
40 | 40 |
\section{Inheritance}{ |
41 | 41 |
|
42 | 42 |
A \code{HCA} object inherits the following \code{struct} classes: \cr\cr |
43 |
-\code{HCA()} ⭢ \code{model()} ⭢ \code{struct_class()} |
|
43 |
+\verb{[HCA]} >> \verb{[model]} >> \verb{[struct_class]} |
|
44 | 44 |
} |
45 | 45 |
|
46 | 46 |
\examples{ |
- get_description moved to struct and updated
... | ... |
@@ -13,11 +13,11 @@ HCA( |
13 | 13 |
) |
14 | 14 |
} |
15 | 15 |
\arguments{ |
16 |
-\item{dist_method}{(character) Distance measure. Allowed values are limited to the following: \itemize{\item{\code{"euclidean"}: The euclidean distance (2 norm).}\item{\code{"maximum"}: The maximum distance.}\item{\code{"manhattan"}: The absolute distance (1 norm).}\item{\code{"canberra"}: A weighted version of the mahattan distance.}\item{\code{"minkowski"}: A generalisation of manhattan and euclidean distance to nth norm.}} The default is \code{"euclidean"}.} |
|
16 |
+\item{dist_method}{(character) Distance measure. Allowed values are limited to the following: \itemize{ \item{\code{"euclidean"}: The euclidean distance (2 norm).}\item{\code{"maximum"}: The maximum distance.}\item{\code{"manhattan"}: The absolute distance (1 norm).}\item{\code{"canberra"}: A weighted version of the mahattan distance.}\item{\code{"minkowski"}: A generalisation of manhattan and euclidean distance to nth norm.}} The default is \code{"euclidean"}.} |
|
17 | 17 |
|
18 |
-\item{cluster_method}{(character) Agglomeration method. Allowed values are limited to the following: \itemize{\item{\code{"ward.D"}: Ward clustering.}\item{\code{"ward.D2"}: Ward clustering using sqaured distances.}\item{\code{"single"}: Single linkage.}\item{\code{"complete"}: Complete linkage.}\item{\code{"average"}: Average linkage (UPGMA).}\item{\code{"mcquitty"}: McQuitty linkage (WPGMA).}\item{\code{"median"}: Median linkage (WPGMC).}\item{\code{"centroid"}: Centroid linkage (UPGMC).}} The default is \code{"complete"}.} |
|
18 |
+\item{cluster_method}{(character) Agglomeration method. Allowed values are limited to the following: \itemize{ \item{\code{"ward.D"}: Ward clustering.}\item{\code{"ward.D2"}: Ward clustering using sqaured distances.}\item{\code{"single"}: Single linkage.}\item{\code{"complete"}: Complete linkage.}\item{\code{"average"}: Average linkage (UPGMA).}\item{\code{"mcquitty"}: McQuitty linkage (WPGMA).}\item{\code{"median"}: Median linkage (WPGMC).}\item{\code{"centroid"}: Centroid linkage (UPGMC).}} The default is \code{"complete"}.} |
|
19 | 19 |
|
20 |
-\item{minkowski_power}{(numeric) The default is \code{2}.} |
|
20 |
+\item{minkowski_power}{(numeric) The default is \code{2}.\cr} |
|
21 | 21 |
|
22 | 22 |
\item{factor_name}{(character) The name of a sample-meta column to use.} |
23 | 23 |
|
... | ... |
@@ -35,9 +35,21 @@ A \code{HCA} object with the following \code{output} slots: |
35 | 35 |
Hierarchical Cluster Analysis is a numerical technique that uses agglomerative clustering to identify clusters or groupings of samples. |
36 | 36 |
} |
37 | 37 |
\details{ |
38 |
-This object makes use of functionality from the following packages:\itemize{\item{\code{stats}}} |
|
38 |
+This object makes use of functionality from the following packages:\itemize{ \item{\code{stats}}} |
|
39 | 39 |
} |
40 |
+\section{Inheritance}{ |
|
41 |
+ |
|
42 |
+A \code{HCA} object inherits the following \code{struct} classes: \cr\cr |
|
43 |
+\code{HCA()} ⭢ \code{model()} ⭢ \code{struct_class()} |
|
44 |
+} |
|
45 |
+ |
|
40 | 46 |
\examples{ |
47 |
+M = HCA( |
|
48 |
+ dist_method = "euclidean", |
|
49 |
+ cluster_method = "complete", |
|
50 |
+ minkowski_power = numeric(0), |
|
51 |
+ factor_name = "V1") |
|
52 |
+ |
|
41 | 53 |
D = iris_DatasetExperiment() |
42 | 54 |
M = HCA(factor_name='Species') |
43 | 55 |
M = model_apply(M,D) |
due to roxygen no longer needing % to be escaped.
- add markdown flag to description file
- use text format for citations (includes markdown)
- remove % from descriptions (doesnt work with current implementation)
... | ... |
@@ -44,8 +44,7 @@ M = model_apply(M,D) |
44 | 44 |
|
45 | 45 |
} |
46 | 46 |
\references{ |
47 |
-R Core Team (2022). |
|
48 |
-\emph{R: A Language and Environment for Statistical Computing}. |
|
49 |
-R Foundation for Statistical Computing, Vienna, Austria. |
|
47 |
+R Core Team (2023). \emph{R: A Language and Environment for Statistical |
|
48 |
+Computing}. R Foundation for Statistical Computing, Vienna, Austria. |
|
50 | 49 |
\url{https://www.R-project.org/}. |
51 | 50 |
} |
... | ... |
@@ -44,7 +44,7 @@ M = model_apply(M,D) |
44 | 44 |
|
45 | 45 |
} |
46 | 46 |
\references{ |
47 |
-R Core Team (2021). |
|
47 |
+R Core Team (2022). |
|
48 | 48 |
\emph{R: A Language and Environment for Statistical Computing}. |
49 | 49 |
R Foundation for Statistical Computing, Vienna, Austria. |
50 | 50 |
\url{https://www.R-project.org/}. |
... | ... |
@@ -24,7 +24,12 @@ HCA( |
24 | 24 |
\item{...}{Additional slots and values passed to \code{struct_class}.} |
25 | 25 |
} |
26 | 26 |
\value{ |
27 |
-A \code{HCA} object. |
|
27 |
+A \code{HCA} object with the following \code{output} slots: |
|
28 |
+\tabular{ll}{ |
|
29 |
+\code{dist_matrix} \tab (dist) An object containing pairwise distance information between samples. \cr |
|
30 |
+\code{hclust} \tab (hclust) An object of class hclust which describes the tree produced by the clustering process. \cr |
|
31 |
+\code{factor_df} \tab (data.frame) \cr |
|
32 |
+} |
|
28 | 33 |
} |
29 | 34 |
\description{ |
30 | 35 |
Hierarchical Cluster Analysis is a numerical technique that uses agglomerative clustering to identify clusters or groupings of samples. |
... | ... |
@@ -39,7 +39,7 @@ M = model_apply(M,D) |
39 | 39 |
|
40 | 40 |
} |
41 | 41 |
\references{ |
42 |
-R Core Team (2020). |
|
42 |
+R Core Team (2021). |
|
43 | 43 |
\emph{R: A Language and Environment for Statistical Computing}. |
44 | 44 |
R Foundation for Statistical Computing, Vienna, Austria. |
45 | 45 |
\url{https://www.R-project.org/}. |
* fix base=10 regardless of input (see #15)
class constructor was always setting base to 10 instead of the input value
* merge bug fix 1.01 into dev (#19)
* bug fix issue #7
Correctly re-order the sample_meta column for colouring samples in the dendrogram plot
* version bump
bug fix issue #7
* fix for https://github.com/computational-metabolomics/structToolbox/issues/18 (#20)
correctly reorder the factor labels so that the control group always ends up in the denominator for the fold change calculation.
* fix for https://github.com/computational-metabolomics/structToolbox/issues/18
fixed incorrect length check on matching class labels.
* Issue 17 ttest factor (#21)
* convert to factor if not one already
fix for issue #17
* update roxygen version
* fix for issue #9 (#22)
changed from lapply to vapply and used drop=FALSE to ensure compatibility with a single factor.
* allow user to set lambda (#24)
- lambda changed to input parameter. NULL = uses pmp optimisation
- model_predict now uses the set value of lambda, or lambda_opt if used.
- documentation updated
* Feature non parametric fold change (#26)
* add "median" method
based on DOI: 10.1080/00949650212140 can now calcuate fold changes equivalent to using medians and corresponding confidence intervals
* update documentation
* update median method
now correctly calculates ratio of medians
* use wilcox for paired median intervals
make use of wilcox.test to estimate intervals for the median when using median for paired samples
* Issue 23 filter by name (#27)
* fix for #23
moved all model_apply functionality to model_predict so that model_train and model_predict can be used as well as model_apply
* update documentation
* Update mean_of_medians.R (#29)
fix for #28
- correctly loop over all levels in the named factor
* Feature documentation 3 12 (#31)
* update documentation
Description and inputs now pulled from the object definitions for consistency.
* fix definition of label_features
allows NULL and description updated
* replace non ascii characters
* export mixed_effect object
* use correct object name to generate documentation
* export mixed_effect object
* remove non ascii characters
* update tests with new object name
* add import for capture.output
* add import for capture.output
* use pca_biplot in tests
chart was renamed
* add utils import
* update struct dependency version
* update documentation
* update news, version bump
... | ... |
@@ -2,7 +2,7 @@ |
2 | 2 |
% Please edit documentation in R/hca_class.R |
3 | 3 |
\name{HCA} |
4 | 4 |
\alias{HCA} |
5 |
-\title{HCA method class} |
|
5 |
+\title{Hierarchical Cluster Analysis} |
|
6 | 6 |
\usage{ |
7 | 7 |
HCA( |
8 | 8 |
dist_method = "euclidean", |
... | ... |
@@ -13,25 +13,24 @@ HCA( |
13 | 13 |
) |
14 | 14 |
} |
15 | 15 |
\arguments{ |
16 |
-\item{dist_method}{The distance method to use for clustering. Can be any one of |
|
17 |
-"euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Default |
|
18 |
-is "euclidean".} |
|
16 |
+\item{dist_method}{(character) Distance measure. Allowed values are limited to the following: \itemize{\item{\code{"euclidean"}: The euclidean distance (2 norm).}\item{\code{"maximum"}: The maximum distance.}\item{\code{"manhattan"}: The absolute distance (1 norm).}\item{\code{"canberra"}: A weighted version of the mahattan distance.}\item{\code{"minkowski"}: A generalisation of manhattan and euclidean distance to nth norm.}} The default is \code{"euclidean"}.} |
|
19 | 17 |
|
20 |
-\item{cluster_method}{The clustering method to use. Can be any one of "ward.D", |
|
21 |
-"ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid". |
|
22 |
-Default is 'complete'.} |
|
18 |
+\item{cluster_method}{(character) Agglomeration method. Allowed values are limited to the following: \itemize{\item{\code{"ward.D"}: Ward clustering.}\item{\code{"ward.D2"}: Ward clustering using sqaured distances.}\item{\code{"single"}: Single linkage.}\item{\code{"complete"}: Complete linkage.}\item{\code{"average"}: Average linkage (UPGMA).}\item{\code{"mcquitty"}: McQuitty linkage (WPGMA).}\item{\code{"median"}: Median linkage (WPGMC).}\item{\code{"centroid"}: Centroid linkage (UPGMC).}} The default is \code{"complete"}.} |
|
23 | 19 |
|
24 |
-\item{minkowski_power}{This parameter is only used when \code{dist_method = 'minkowski'}.} |
|
20 |
+\item{minkowski_power}{(numeric) The default is \code{2}.} |
|
25 | 21 |
|
26 |
-\item{factor_name}{The sample_meta column to use.} |
|
22 |
+\item{factor_name}{(character) The name of a sample-meta column to use.} |
|
27 | 23 |
|
28 |
-\item{...}{additional slots and values passed to struct_class} |
|
24 |
+\item{...}{Additional slots and values passed to \code{struct_class}.} |
|
29 | 25 |
} |
30 | 26 |
\value{ |
31 |
-struct object |
|
27 |
+A \code{HCA} object. |
|
32 | 28 |
} |
33 | 29 |
\description{ |
34 |
-HCA method class. Calculate a hierarchical clustering for the input data. |
|
30 |
+Hierarchical Cluster Analysis is a numerical technique that uses agglomerative clustering to identify clusters or groupings of samples. |
|
31 |
+} |
|
32 |
+\details{ |
|
33 |
+This object makes use of functionality from the following packages:\itemize{\item{\code{stats}}} |
|
35 | 34 |
} |
36 | 35 |
\examples{ |
37 | 36 |
D = iris_DatasetExperiment() |
... | ... |
@@ -39,3 +38,9 @@ M = HCA(factor_name='Species') |
39 | 38 |
M = model_apply(M,D) |
40 | 39 |
|
41 | 40 |
} |
41 |
+\references{ |
|
42 |
+R Core Team (2020). |
|
43 |
+\emph{R: A Language and Environment for Statistical Computing}. |
|
44 |
+R Foundation for Statistical Computing, Vienna, Austria. |
|
45 |
+\url{https://www.R-project.org/}. |
|
46 |
+} |
... | ... |
@@ -4,16 +4,34 @@ |
4 | 4 |
\alias{HCA} |
5 | 5 |
\title{HCA method class} |
6 | 6 |
\usage{ |
7 |
-HCA(...) |
|
7 |
+HCA( |
|
8 |
+ dist_method = "euclidean", |
|
9 |
+ cluster_method = "complete", |
|
10 |
+ minkowski_power = 2, |
|
11 |
+ factor_name, |
|
12 |
+ ... |
|
13 |
+) |
|
8 | 14 |
} |
9 | 15 |
\arguments{ |
16 |
+\item{dist_method}{The distance method to use for clustering. Can be any one of |
|
17 |
+"euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Default |
|
18 |
+is "euclidean".} |
|
19 |
+ |
|
20 |
+\item{cluster_method}{The clustering method to use. Can be any one of "ward.D", |
|
21 |
+"ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid". |
|
22 |
+Default is 'complete'.} |
|
23 |
+ |
|
24 |
+\item{minkowski_power}{This parameter is only used when \code{dist_method = 'minkowski'}.} |
|
25 |
+ |
|
26 |
+\item{factor_name}{The sample_meta column to use.} |
|
27 |
+ |
|
10 | 28 |
\item{...}{additional slots and values passed to struct_class} |
11 | 29 |
} |
12 | 30 |
\value{ |
13 | 31 |
struct object |
14 | 32 |
} |
15 | 33 |
\description{ |
16 |
-HCA method class. Calculate a hierarchical clustering for the input data |
|
34 |
+HCA method class. Calculate a hierarchical clustering for the input data. |
|
17 | 35 |
} |
18 | 36 |
\examples{ |
19 | 37 |
M = HCA() |
...update some documentation
...rename all function with dot to underscore
replace dataset with DatasetExperiment
1 | 1 |
new file mode 100644 |
... | ... |
@@ -0,0 +1,14 @@ |
1 |
+% Generated by roxygen2: do not edit by hand |
|
2 |
+% Please edit documentation in R/hca_class.R |
|
3 |
+\name{HCA} |
|
4 |
+\alias{HCA} |
|
5 |
+\title{HCA method class} |
|
6 |
+\usage{ |
|
7 |
+HCA(...) |
|
8 |
+} |
|
9 |
+\description{ |
|
10 |
+HCA method class. Calculate a hierarchical clustering for the input data |
|
11 |
+} |
|
12 |
+\examples{ |
|
13 |
+M = HCA() |
|
14 |
+} |