Name:

CSE341, Winter 2013, Midterm Examination
February 8, 2013

Please do not turn the page until 12:30.

Rules:

e The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

Please stop promptly at 1:20.

e You can rip apart the pages, but please staple them back together before you leave.

There are 100 points total, distributed unevenly among 5 questions (all with multiple parts).

e When writing code, style matters, but don’t worry much about indentation.

Advice:
e Read questions carefully. Understand a question before you start writing.

e Write down thoughts and intermediate steps so you can get partial credit.

The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

If you have questions, ask.

Relax. You are here to learn.

Name:

1. This problem uses this datatype binding, where a value of type points describes a set of points on the
plane, i.e., a 2-D plot with an z-axis and a y-axis.

datatype points = Point of real * real

| Seg of real * real * real * real

| Union of points * points

| Shift of points * real * real
Point(x,y) represents the point (x,y).
Seg(x1,y1,x2,y2) respresents all points on the line segment with endpoints (x1,y1) and (x2,y2).
Union(s1,s2) represents all points represented by s1 unioned with all points represented by s2.

Shift(s,dx,dy) represents the points represented by s after shifting them to the right by dx and
up by dy.

Note: we did not use type real much in class, but you can use arithmetic operations (e.g., +) and
comparison operations (e.g., >) as expected.

(a)

(12 points) Write an ML function rightmost of type points -> real * real such that
rightmost s returns the point in the set represented by s with the largest z-coordinate. (You
can resolve ties however you wish.) Notice the result type is real * real, the z-coordinate and
y-coordinate.

(12 points) Write an ML function max_shifts of type points -> int that given s computes
the maximum number of shifts that apply to a single “point” or “segment” in s. Note this is not
necessarily the number of Shift constructors in s. For example, the correct answer for

Union(Shift(Point(0.0,0.0),1.0,1.0),
Shift (Union(Shift(Point(2.0,2.0),1.0,1.0),
Shift(Shift(Seg(3.0,4.0,5.0,6.0),7.0,8.0),9.0,10.0)),
20.0,75.0))

is 3 because the one segment is under three Shift constructors, including the one outside the
nested Union.

Name:

More room for Problem 1 in case you need it

Name:

2. This problem uses these two similar but different functions:

fun f1 (xs,ys) =
case (xs,ys) of
I, =10
| (x::xs’, yi:ys?) => (x,y)::(f1(xs’,ys’))
| (x::xs?, [1) => [
I (01, y::ys?) => []

fun f2 (xs,ys) =
case (xs,ys) of
(7,0 = 11
| (x::xs?, y::ys’) => (x,y)::(f2(xs’,ys’))
| (x::xs’, [1) => (x,0)::(f2(xs’,[1))
[(0D, y::ys’) => (0,y)::(£2([],ys’))

(a) (5 points) Fill in the blanks so that c1 and d1 are both bound to [(2,2),(1,1),(0,0)]

val al = ____________________
val bl = ________ ____________
val c1 = f1(al,bl)
val d1 = f2(al,bl)

(b) (5 points) Fill in the blanks so that d2 but not ¢2 is bound to [(2,2),(1,1),(0,0)]

val a2 = _____ ___ _ _ __________
val b2 = ________ __ __________
val c2 = f1(a2,b2)
val d2 = f2(a2,b2)

(¢) (5 points) Fill in the blanks so that ¢3 but not d3 is bound to [(2,2),(1,1),(0,0)]

val a3 = _____ _____ __________
val b3 = ____________________
val c3 = f1(a3,b3)
val d3 = £2(a3,b3)

Name:

3. For each of the following programs, give the value that ans is bound to after evaluation:
(a) (4 points)

val x = 1
fun f y =
let

val x = y
val y = x

[

in
y+1
end
val z = f 4
fun f x
val ans

(b) (4 points)

non
N ™

=1
=2
(g,h) =gx+hy
=3
=4
val ans =

val
val
fun
val
val

<M Fhg M

f ((fn z => x), (fn z => 2))
(c) (4 points)

exception E

val x = 1

fun f x = if x=2 then raise E else 14
val x = 2

val ans = ((f x) + 4) handle E => 9

(d) (4 points)

val z = 2

val £ = (fn x => x + 1) o (fn y => if y=z then 4 else y)
val z 3

val ans = List.map f [1,2,3,4,5]

4.

Name:

(a)

(10 points) Without using any helper functions (such as foldl), write an ML function in_order
that behaves as follows:

o It takes two arguments in curried form: (1) a function f that given a list element produces
an integer and (2) a list xs.

e It returns true if and only if for all elements of xs, £ applied to the element returns a number
less than or equal to f applied to any later elements of the list. (This means the result is true
for any list with fewer than two elements.)

(6 points) Using in_order, write a function shorter_strings that takes a list of strings and
returns true if and only if each string in the list is longer than the strings that come later in the
list. Hint: You can use ML’s ~ operator for negation.

(4 points) What is the type of in_order?
(2 points) What is the type of shorter_strings?

(4 points) When your solution to part (a) is given a list xs of length n, how many times is the
function passed for f called before in_order returns?

(3 points) Suppose another student has a different answer to part (e) and you are both correct
because you have different correct answers to part (a). Are your solutions to part (a) equivalent?
Explain briefly.

Name:

. In this problem, suppose we have an ML structure M and signature S in this standard usage:

signature S =

sig

end

structure M :> S =
struct

end

Assume everything type-checks initially, meaning M matches S. For each of the following statements,

answer “always,

? “sometimes,” or “never.”

(16 points) (2 points each)

If S originally contains val f : int -> int and we comment out this line, then M will still match
S.

If S originally contains val £ : int -> int and we comment out this line, then a client of M will
still type-check.

If S originally does not contain val g : string -> string and we add it to S, then M will still
match S.

If S originally does not contain val g : string -> string and we add it to S, then a client of
M will still type-check.

If S originally contains an abstract type type t and we replace this line with
datatype t = Foo of int | Bar of bool, then M will still match S.

If S originally contains an abstract type type t and we replace this line with
datatype t = Foo of int | Bar of bool, then a client of M will still type-check.

If S originally contains the line datatype t = Foo of int | Bar of bool, and we replace this
line with type t, then M will still match S.

If S originally contains the line datatype t = Foo of int | Bar of bool, and we replace this
line with type t, then a client of M will still type-check.

Name:

More room in case you need it.

