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Hi, I’m Nicholas orelse Nick 

• 5th year Masters Student and THIS IS MY LAST 
QUARTER!!! 

• Grew up in California 

• Lived in San Francisco before moving to Seattle 

• Talk to me any time about Movies, Music, Video 
Games 

• Can also talk to me about CSE 341 
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Today’s Agenda 

• ML Development Workflow 
• Emacs 

• Using use 

• The REPL 

 

• More ML 
• Shadowing Variables 

• Debugging Tips 

• Boolean Operations 

• Comparison Operations 
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Emacs 

• Recommended (not required) editor for this course 

• Powerful, but the learning curve can at first be 
intimidating 

• Helpful resources 
• CSE 341 Emacs Guide 

• Google it!  

• /r/emacs     Foot Pedals??? 

• Course staff, or ask around in the labs 

 

4 

http://www.cs.washington.edu/education/courses/cse341/16sp/sml_emacs.pdf
http://www.cs.washington.edu/education/courses/cse341/16sp/sml_emacs.pdf
http://www.cs.washington.edu/education/courses/cse341/16sp/sml_emacs.pdf
http://www.cs.washington.edu/education/courses/cse341/16sp/sml_emacs.pdf
https://www.reddit.com/r/emacs/comments/1tv6hc/foot_pedals_for_m_and_c/


Quick Emacs Demo 

Image credit: http://earlcolour.deviantart.com/art/emacs-user-at-work-195326745 

5 



Using use 

• Enters bindings from the file foo.sml 
• Like typing the variable bindings one at a time in 

sequential order into the REPL (more on this in a 
moment) 

• Result is () bound to variable it 
• Ignorable 

use "foo.sml"; 
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The REPL 

• Read-Eval-Print-Loop is well named 

• Conveniently run programs: C-c C-s 
• Useful to quickly try something out 

• Save code for reuse by moving it into a persistent .sml 
file 

• Expects semicolons 

• For reasons discussed later, it’s dangerous to reuse 
use without restarting the REPL session 
• End the REPL session with C-d 
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Shadowing of Variable Bindings 
val a = 1; (* a -> 1 *) 

val b = a * 10; (* a -> 1, b -> 10 *) 

val a = 2; (* a -> 2, b -> 10 *) 

• Expressions in variable bindings are evaluated “eagerly” 

– Before the variable binding “finishes” 

– Afterwards, the expression producing the value is irrelevant 

• Multiple variable bindings to the same variable name, or “shadowing”, is 
allowed 

– When looking up a variable, ML uses the most recent binding by that 
name in the current environment 

• Remember, there is no way to “assign to” a variable in ML 

– Can only shadow it in a later environment 

– After binding, a variable’s value is an immutable constant 
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Try to Avoid Shadowing 

• Shadowing can be confusing and is often poor style 

• Why? Reintroducing variable bindings in the same 
REPL session may.. 
• make it seem like wrong code is correct; or 

• make it seem like correct code is wrong. 

val x = "Hello World"; 

val x = 2;        (* is this a type error? *) 

val res = x * 2;  (* is this 4 or a type error? *) 
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Using a Shadowed Variable 

• Is it ever possible to use a shadowed variable? Yes! 
And no… 

• It can be possible to uncover a shadowed variable 
when the latest binding goes out of scope 

 
val x = "Hello World"; 

fun add1(x : int) = x + 1; (* shadow x in func body *) 

val y = add1 2; 

val z = x ^ "!!"; (* "Hello World!!" *) 
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Use use Wisely 

• Warning: Variable shadowing makes it dangerous to call 
use more than once without restarting the REPL 
session. 

• It may be fine to repeatedly call use in the same REPL 
session, but unless you know what you’re doing, be 
safe! 
• Ex: loading multiple distinct files (with independent variable 

bindings) at the beginning of a session 

• The behavior of use is well-defined, but even expert 
programmers can get confused 

• Restart your REPL session before repeated calls to use 
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Debugging Errors 

Your mistake could be: 
• Syntax: What you wrote means nothing or not the 

construct you intended 

• Type-checking: What you wrote does not type-check 

• Evaluation: It runs but produces wrong answer, or an 
exception, or an infinite loop 

Keep these straight when debugging even if 
sometimes one kind of mistake appears to be 
another 
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Play Around 

Best way to learn something: Try lots of things and 
don’t be afraid of errors 

 

Work on developing resilience to mistakes 
• Slow down 

• Don’t panic 

• Read what you wrote very carefully 

 

Maybe watching me make a few mistakes will help… 
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Boolean Operations 

• not is just a pre-defined function, but andalso and 
orelse must be built-in operations since they cannot be 
implemented as a function in ML. 
• Why? Because andalso and orelse “short-circuit” their 

evaluation and may not evaluate both e1 and e2. 

• Be careful to always use andalso instead of and. 

• and is completely different. We will get back to it later. 

 

Operation Syntax Type-checking Evaluation 

andalso e1 andalso e2 e1 and e2 must have type 
bool 

Same as Java’s  
e1 && e2 

orelse e1 orelse e2 e1 and e2 must have type 
bool 

Same as Java’s  
e1 || e2 

not not e1 e1 must have type bool Same as Java’s 
!e1 
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Style with Booleans 

Language does not need  andalso , orelse , or not 

 

 

 

 

 

Using more concise forms generally much better style 

And definitely please do not do this: 

 

(* e1 andalso e2 *) 

if e1 

then e2 

else false 

(* e1 orelse e2 *) 

if e1 

then true 

else e2 

(* just say e (!!!) *) 

if e 

then true 

else false 

(* not e1 *) 

if e1 

then false 

else true 
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Comparisons 

For comparing int values:   

=  <>  >  <  >=  <= 

You might see weird error messages because 
comparators can be used with some other types too: 

 

• > < >= <= can be used with real, but not a 
mixture of 1 int and 1 real 

• = <> can be used with any “equality type” but 
not with real 
• Let’s not discuss equality types yet 
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