
CSE 341
Section 1

Nicholas Shahan

Spring 2016

Adapted from slides by Josiah Adams, Cody A. Schroeder, and Dan Grossman

Hi, I’m Nicholas orelse Nick

• 5th year Masters Student and THIS IS MY LAST
QUARTER!!!

• Grew up in California

• Lived in San Francisco before moving to Seattle

• Talk to me any time about Movies, Music, Video
Games

• Can also talk to me about CSE 341

2

Today’s Agenda

• ML Development Workflow
• Emacs

• Using use

• The REPL

• More ML
• Shadowing Variables

• Debugging Tips

• Boolean Operations

• Comparison Operations

3

Emacs

• Recommended (not required) editor for this course

• Powerful, but the learning curve can at first be
intimidating

• Helpful resources
• CSE 341 Emacs Guide

• Google it!

• /r/emacs Foot Pedals???

• Course staff, or ask around in the labs

4

http://www.cs.washington.edu/education/courses/cse341/16sp/sml_emacs.pdf
http://www.cs.washington.edu/education/courses/cse341/16sp/sml_emacs.pdf
http://www.cs.washington.edu/education/courses/cse341/16sp/sml_emacs.pdf
http://www.cs.washington.edu/education/courses/cse341/16sp/sml_emacs.pdf
https://www.reddit.com/r/emacs/comments/1tv6hc/foot_pedals_for_m_and_c/

Quick Emacs Demo

Image credit: http://earlcolour.deviantart.com/art/emacs-user-at-work-195326745

5

Using use

• Enters bindings from the file foo.sml
• Like typing the variable bindings one at a time in

sequential order into the REPL (more on this in a
moment)

• Result is () bound to variable it
• Ignorable

use "foo.sml";

6

The REPL

• Read-Eval-Print-Loop is well named

• Conveniently run programs: C-c C-s
• Useful to quickly try something out

• Save code for reuse by moving it into a persistent .sml
file

• Expects semicolons

• For reasons discussed later, it’s dangerous to reuse
use without restarting the REPL session
• End the REPL session with C-d

7

Shadowing of Variable Bindings
val a = 1; (* a -> 1 *)

val b = a * 10; (* a -> 1, b -> 10 *)

val a = 2; (* a -> 2, b -> 10 *)

• Expressions in variable bindings are evaluated “eagerly”

– Before the variable binding “finishes”

– Afterwards, the expression producing the value is irrelevant

• Multiple variable bindings to the same variable name, or “shadowing”, is
allowed

– When looking up a variable, ML uses the most recent binding by that
name in the current environment

• Remember, there is no way to “assign to” a variable in ML

– Can only shadow it in a later environment

– After binding, a variable’s value is an immutable constant

8

Try to Avoid Shadowing

• Shadowing can be confusing and is often poor style

• Why? Reintroducing variable bindings in the same
REPL session may..
• make it seem like wrong code is correct; or

• make it seem like correct code is wrong.

val x = "Hello World";

val x = 2; (* is this a type error? *)

val res = x * 2; (* is this 4 or a type error? *)

9

Using a Shadowed Variable

• Is it ever possible to use a shadowed variable? Yes!
And no…

• It can be possible to uncover a shadowed variable
when the latest binding goes out of scope

val x = "Hello World";

fun add1(x : int) = x + 1; (* shadow x in func body *)

val y = add1 2;

val z = x ^ "!!"; (* "Hello World!!" *)

10

Use use Wisely

• Warning: Variable shadowing makes it dangerous to call
use more than once without restarting the REPL
session.

• It may be fine to repeatedly call use in the same REPL
session, but unless you know what you’re doing, be
safe!
• Ex: loading multiple distinct files (with independent variable

bindings) at the beginning of a session

• The behavior of use is well-defined, but even expert
programmers can get confused

• Restart your REPL session before repeated calls to use

11

Debugging Errors

Your mistake could be:
• Syntax: What you wrote means nothing or not the

construct you intended

• Type-checking: What you wrote does not type-check

• Evaluation: It runs but produces wrong answer, or an
exception, or an infinite loop

Keep these straight when debugging even if
sometimes one kind of mistake appears to be
another

12

Play Around

Best way to learn something: Try lots of things and
don’t be afraid of errors

Work on developing resilience to mistakes
• Slow down

• Don’t panic

• Read what you wrote very carefully

Maybe watching me make a few mistakes will help…

13

Boolean Operations

• not is just a pre-defined function, but andalso and
orelse must be built-in operations since they cannot be
implemented as a function in ML.
• Why? Because andalso and orelse “short-circuit” their

evaluation and may not evaluate both e1 and e2.

• Be careful to always use andalso instead of and.

• and is completely different. We will get back to it later.

Operation Syntax Type-checking Evaluation

andalso e1 andalso e2 e1 and e2 must have type
bool

Same as Java’s
e1 && e2

orelse e1 orelse e2 e1 and e2 must have type
bool

Same as Java’s
e1 || e2

not not e1 e1 must have type bool Same as Java’s
!e1

14

Style with Booleans

Language does not need andalso , orelse , or not

Using more concise forms generally much better style

And definitely please do not do this:

(* e1 andalso e2 *)

if e1

then e2

else false

(* e1 orelse e2 *)

if e1

then true

else e2

(* just say e (!!!) *)

if e

then true

else false

(* not e1 *)

if e1

then false

else true

15

Comparisons

For comparing int values:

= <> > < >= <=

You might see weird error messages because
comparators can be used with some other types too:

• > < >= <= can be used with real, but not a
mixture of 1 int and 1 real

• = <> can be used with any “equality type” but
not with real
• Let’s not discuss equality types yet

16

