Programming Languages and
Compilers (CS 421)

»

1
Elsa L Gunter
2112 SC, UIluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/14/14

iTwo Problems

= Type checking

= Question: Does exp. e have type T in env I'?
= Answer: Yes / No
= Method: Type derivation
= Typability
= Question Does exp. e have some type in env. I'?
If so, what is it?
= Answer: Type T / error
= Method: Type inference
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i Type Inference - Outline

= Begin by assigning a type variable as the type of
the whole expression

= Decompose the expression into component
expressions

= Use typing rules to generate constraints on
components and whole

= Recursively find substitution that solves typing
judgment of first subcomponent

= Apply substitution to next subcomponent and find
substitution solving it; compose with first, etc.

= Apply comp of all substitution to orig. type var. to
get answer
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i Type Inference - Example

= What type can we give to
(fun x -> fun f -> f (f x))

= Start with a type variable and then look at
the way the term is constructed
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i Type Inference - Example

= First approximate:
{}- (funx->funf->f(fx)): «a

= Second approximate: use fun rule
{X:B}|-(funf->f(fx)):y

{}|-(funx->funf->f(fx)): a
= Remember constraint o = (f — v)
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i Type Inference - Example

= Third approximate: use fun rule
{f:0;x:p}[-f(Fx):e
X:B}|-(funf->f(fx)) :y
{}|-(funx->funf->f(fx)) :
ma=(P—=7);v=(0—¢)
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iType Inference - Example

= Fourth approximate: use app rule
{f:0; x:B}-f:p—=¢ {f:0; x:if}-fx:q

{f:o,x:BrI-(F(fx)) ¢
{X:B}|-(funf->f(fx)) :y
{}I-(funx->funf->f(fx)):a
=a=(B—=v);v=(0—¢)
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iType Inference - Example

= Fifth approximate: use var rule, get
constraint 6=¢ — ¢, Solve with same

= Apply to next sub-proof
{f:0; x:p}-f:p—=¢ {f:0; x:iP}-fx: @
{f:0;x:BY[-(f(fx)):e
X:B}[-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
s a=(@-y)v=0->¢
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i Type Inference - Example

= Current subst: {6=¢ — &}

{fip = ¢; Xif}-fX: @
{f:8; x:BY|-(fF(fx):¢
{xX:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): a
ma=(B—=y);v=00—¢)
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i Type Inference - Example

= Current subst: {6=¢ — ¢}

{fro—e; X:p}H- F:iT—0 {fig—e; x:B}- x:T
{fip = ¢; XiB}-fX: 0
{f:0; x:BY|-(F(fX)): ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): a
ma=(B—=7);v=(0—>¢)
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i Type Inference - Example

= Current subst: {6=¢ — ¢}
= Var rule: Solve C—¢ =¢p—¢ Unification

{fio—¢; X:B}- fiC—q {fig—e; X:B}- x:T
{fip = ¢; Xif}-fX: @
{f:0; x:BY]-(F(fX)): ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): «
ma=B—=>v);v=0—¢)
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* Type Inference - Example

= Current subst: {C=¢, p=¢} o {6=¢p — ¢}
= Var rule: Solve T—¢ =¢p—¢ Unification

{fio—¢; X:B}- iT—g {fig—e; x:B}-x:T
{fip = ¢; Xif}-fX: @
{:0; x:B]-(F(fX) : ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
ma=B—=>v)yv=0—¢)
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iType Inference - Example

= Current subst: {C=¢, gp=¢, d=c—¢}
= Apply to next sub-proof
{fie—¢; X:p}|- Xie
{fip = ¢; XiB}-fX: 0
{:0;x:B]-(F(fx)) ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
=a=(B—=7)v=(0—¢)
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iType Inference - Example

= Current subst: {C=¢, g=¢, d=¢—¢}
= Var rule: e=p

{fie—¢; X:p}|- xie
{fip = ¢; XiB}-fX: @
{:0; x:Br|-(F(fx)) ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
=a=(B—=v);1=0—¢)
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‘ Type Inference - Example

= Current subst: {e=pf}o{C=¢, @=¢, d=c—¢}
= Solves subproof; return one layer
{f:ie—¢; X:B}|- X:e
{fip = ¢; XiB}-fX: @

{0 x:BY[-(F(fFx)) ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): «a

=a=B—=7)v=(0—¢)
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‘ Type Inference - Example

= Current subst: {e=p, C=p, ¢=p, 0=p—PL}
= Solves this subproof; return one layer

{fip = ¢; XiB}-fX: 0
{f:8;x:BY|-(F(fx)) : ¢
{X:B}|-(funf->f(fx)):y

{}]-(funx->funf->f(fx)): a
ma=B—=>v);v=0—>¢)
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’ Type Inference - Example

= Current subst: {e=B, t=B, ¢=p, 5=p—Pp}

= Need to satisfy constraint y = (6 — ¢),
given subst: y = ((B—p) — B)

{f:0;x:B}[-(F(fFx)) :¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): a
sa=(B=y)v=(0=e)
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‘ Type Inference - Example

= Current subst:

{v = ((B—B) — B),e=B, =B, 9=B, 6=p—Pp}
= Solves subproof; return one layer

{:0; x:BY|-(F(fX)) : ¢
{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)):a
ma=B—=>v)yv=0—¢)
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iType Inference - Example

= Current subst:

{v = ((B—B) — B),e=P, T=B, v=B, 6=p—P}
= Need to satisfy constraint o = (B — v)
given subst: o = (8 = ((B—=B) — B))

{X:B}|-(funf->f(fx)):y
{}|-(funx->funf->f(fx)): a

= a=(p—>vy)
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iType Inference - Example

= Current subst:
{o=(B — ((B—B) —= B)),
y = ((B—B) — B),e=P, =B, @=B, 6=p—P}

= Solves subproof; return on layer

{X:B}|-(funf->f(fx)):y
{}]-(funx->funf->f(fx)): a
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‘ Type Inference - Example

= Current subst:

{a= (B = ((B—=B) = B)),

v = ((B—=B) — B)ie=B, =B, =B, 6=p—Pp}
= Done: a = (B — ((B—p) —= B))

{}|-(funx->funf->f(fx)): a
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ﬂpe Inference Algorithm

Let infer (I', e, t) = o

= [ is a typing environment (giving polymorphic
types to expression variables)

= €is an expression

= tis a type (with type variables),

o is a substitution of types for type variables

Idea: o is the constraints on type variables
necessary for T |-e:x

= Should have o(I') |- e: o(T)
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ﬂpe Inference Algorithm

has_type (T, exp, 1) =
= Case exp of
= Var v --> return Unify{t = freshInstance(I'(v))}
= Replace all quantified type vars by fresh ones

= Const ¢ --> return Unify{t = freshInstance ¢ }
where T |- ¢: ¢ by the constant rules

=« fun x-> e -->
= Let o, B be fresh variables
sleto =infer{x: a} + T, € B)
= Return Unify({o(t) = o(aa = B)}) o o
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‘ Type Inference Algorithm (cont)

= Case exp of
=App (& &) -->
«Let a be a fresh variable
«Let o, = infer(T, ¢, a — 1)
«Let o, = infer(o(I), &, o(a))
=Return o, 0 oy
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i Type Inference Algorithm (cont)

= Case exp of
= If g then g, else g; -->
= Let oy = infer(T, e, bool)
sLet o, = infer(oT, &, 0,(T))
= Let o3 = infer(o, o 0,(T),&,,0, 0 0(T))
=Return 030 0,0 0y
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iType Inference Algorithm (cont)

= Case exp of
slet x=¢/ine >
=« Let a be a fresh variable
«Let o, = infer(T, ¢, o)
«Let o,
infer({x:GEN(o,(T’), o,(a))} + o4(T),
eZI 01(‘5))
=Return o, 0 oy
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‘ Type Inference Algorithm (cont)

= Case exp of
sletrecx=¢ in e, -->
«Let a be a fresh variable
slet o, = infer({x: a} + T, €, o)
«Let o, = infer({x:GEN(o,(T"),0,(a))}
+ 0y(IN}, &, 04(7))

= Return 0,0 04
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‘ Type Inference Algorithm (cont)

= To infer a type, introduce type_of
= Let o be a fresh variable

= type_of (T, e) =
« Let o = infer (T, €, o)
= Return o (o)

= Need an algorithm for Unif
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’ Background for Unification

= Terms made from constructors and variables (for
the simple first order case)

= Constructors may be applied to arguments (other
terms) to make new terms

= Variables and constructors with no arguments are
base cases

= Constructors applied to different number of
arguments (arity) considered different

= Substitution of terms for variables
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‘ Simple Implementation Background

type term = Variable of string
| Const of (string * term list)

let rec subst var_name residue term =
match term with Variable name ->
if var_name = name then residue else term
| Const (c, tys) ->
Const (¢, List.map (subst var_name residue)

tys);;
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i Unification Problem

Given a set of pairs of terms (“equations”)
{(S]_I tl)l (SZI tz)l e (Snl tn)}
(the unification problem) does there exist
a substitution o (the wunification solution)
of terms for variables such that
o(s;) = o(t),
foralli=1, .. n?
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i Uses for Unification

= Type Inference and type checking
= Pattern matching as in OCAML
= Can use a simplified version of algorithm
= Logic Programming - Prolog
= Simple parsing
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‘ Unification Algorithm

m LetS = {(sy, t1), (55, &), ..., (5, )} bea
unification problem.

= Case S = { }: Unif(S) = Identity function
(i.e., no substitution)

= Case S = {(s, t)} U S’ : Four main steps
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‘ Unification Algorithm

= Delete: if s = t (they are the same term)
then Unif(S) = Unif(S’)

= Decompose: if s = f(qy, ..., q,,) and t
=f(ry, ..., ry,) (same f, same m!), then

Unlf(S) = Unlf({(qlr rl)l Y (qmr rm)} U S,)
= Orient: if t = X is a variable, and s is not a
variable, Unif(S) = Unif ({(x,s)} US’)
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’ Unification Algorithm

= Eliminate: if s = x is a variable, and
X does not occur in t (the occurs
check), then
sletp=x|—t
= Let y = Unif(¢(S’))
= Unif(S) = {x |- y(t)} oy
«Note: {x |=a}o{y|—=b}=
{y = ({x |=a}b))} o{x |—a}ify

notin a
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‘ Tricks for Efficient Unification

= Don’ t return substitution, rather do it
incrementally
= Make substitution be constant time

= Requires implementation of terms to use
mutable structures (or possibly lazy
structures)

= We won’ t discuss these
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i Example

= X,Yy,z variables, f,g constructors

= S = {(f(x), f(a(y,2))), (9(y.f(¥)), X)}
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i Example

= X,Yy,z variables, f,g constructors
= S is nonempty

= S = {(f(x), f(a(y,2))), (9(y.f(¥)), X)}
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‘ Example

= X,Y,Z variables, f,g constructors
= Pick a pair: (g(y,f(y)), x)

= S = {(f(x), f(a(y,2))), (9(y,f(y)), x)}
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‘ Example

= X,Y,z variables, f,g constructors

= Pick a pair: (g(y,f(y))), x)

= Orient: (x, g(y,f(y)))

= S = {(f(x), f(9(y,2))), (a(y.f(y)), x)}
= -> {(f(x), f(9(y,2))), (x, 9(y,f(¥))}
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’ Example

= X,Y,Z variables, f,g constructors

= S -> {(f(x), f(9(y,2))), (x, 9(y,f(y)))}
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‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (f(x), f(g(y,z)))

= S -> {(f(x), f(a(y,2))), (x, 9(y,f(y)))}
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i Example

= X,Yy,z variables, f,g constructors

= Pick a pair: (f(x), f(g(y,2)))

= Decompose: (X, g(y,2))

= S -> {(f(x), f(a(y,2))), (x, 9(y.f(y)))}
= > {(x, 9(y,2)), (x, g(y,f(y)))}
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i Example

= X,Yy,z variables, f,g constructors

= Pick a pair: (x, g(y,f(y)))

= Substitute: {x |-> g(y,f(y))}

= S ->{(x, 9(y,2)), (x, 9y, f(y))}
= -> {(a(y,f(y)), 9(v,2))}

= With {x [-> g(y,f(y))}
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‘ Example

= X,Y,Z variables, f,g constructors
= Pick a pair: (g(y,f(y)), 9(y,2))

= S -> {(g(y.f(v)), 9(y,2))}

With {x |— g(y,f(y))}
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‘ Example

= X,Y,z variables, f,g constructors

= Pick a pair: (g(y,f(y)), 9(y,2))

= Decompose: (y, y) and (f(y), )
= S -> {(a(y.f(y)), 9(y,2))}

= ->{(y, ), (f(y), 2)}

With {x [ g(y,f(y))}
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’ Example

= X,Y,Z variables, f,g constructors
= Pick a pair: (y, y)

= S ->{(y, y), (f(y), 2)}

With {x |— g(y,f(y))}
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ixample

= X,Y,z variables, f,g constructors
= Pick a pair: (y, y)

= Delete

= S->{(y, y), (f(y), 2)}

= -> {(f(y), 2)}

With {x [— g(y,f(y))}
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i Example

= X,Yy,z variables, f,g constructors
= Pick a pair: (f(y), 2)

= S -> {(f(y), 2)}

with {x |— g(y,f(y))}
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i Example

= X,Yy,z variables, f,g constructors
= Pick a pair: (f(y), z)

= Orient: (z, f(y))

= S ->{(f(y), 2)}

= ->{(z, f(y))}

With {x |— g(y,f(y))}
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‘ Example

= X,Y,Z variables, f,g constructors
= Pick a pair: (z, f(y))

= S->{(z f(y))}

With {x |— g(y,f(y))}
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‘ Example

= X,Y,z variables, f,g constructors
= Pick a pair: (z, f(y))

= Eliminate: {z|-> f(y)}

= S->{(z, f(y)}

n->{}

With {x [ {z | f(y)} (9(y,f(y))) }
o {z | f(y)}
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’ Example

= X,Y,Z variables, f,g constructors
= Pick a pair: (z, f(y))

= Eliminate: {z|-> f(y)}

= S->{(z, f(y)}

n->{}

With {x |- g(y,f(y))} o {(z | f(y))}
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‘ Example

S = {(f(x), f(a(y,2))), (9(y,f(¥))x)}
Solved by {x [ g(y,f(y))} o {(z | f(y))}
flg(y,f(¥))) = f(a(y,f(¥)))

X z

and

a(y,f(y)) = g9(y,f(y))
X
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i Example of Failure: Decompose

= S = {(f(x,9(y)), f(h(y),x))}

= Decompose: (f(x,g(y)), f(h(y),x))
= S ->{(x,h(y)), (9(y),x)}

= Orient: (g(y),x)

= S -> {(x,h(y)), (x,a(y))}
= Eliminate: (x,h(y))

= S -> {(h(y), 9(y))} with {x = h(y)}
= No rule to apply! Decompose fails!
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i Example of Failure: Occurs Check

= S = {(f(x,9(x)), f(h(x),x))}

= Decompose: (f(x,9(x)), f(h(x),x))
= S -> {(x,h(x)), (9(x),x)}

= Orient: (g(y),x)

= S -> {(x,h(x)), (x,9(x))}

= No rules apply.
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‘ Major Phases of a Compiler

Source Program

Optimized IR

Instruction Relocatable
Tokens Selection Ob e.ct Code
Unoptimized Machine- _

Semantic Code

Analysis Optimized Machine-Specific

Symbol Table

g)stract Syntax | Specific Assembly Language | Machine

Assembly Language

Intermediate Assembly Language
Representation Y guag

‘ Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

‘ Meta-discourse

= Language Syntax and Semantics
= Syntax
- Regular Expressions, DFSAs and NDFSAs
- Grammars
= Semantics
- Natural Semantics
- Transition Semantics
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’ Language Syntax

= Syntax is the description of which strings of
symbols are meaningful expressions in a
language

= It takes more than syntax to understand a
language; need meaning (semantics) too

= Syntax is the entry point
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‘ Syntax of English Language

= Pattern 1 Subject | Verb
David sings

The dog | barked

Susan | yawned
= Pattern 2 Subject Verb Direct Object
David sings | ballads

The professor | wants | to retire

The jury found | the defendant guilty
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i Elements of Syntax

= Character set — previously always ASCII,
now often 64 character sets

= Keywords — usually reserved

= Special constants — cannot be assigned to
= Identifiers — can be assigned to

= Operator symbols

= Delimiters (parenthesis, braces, brackets)
= Blanks (aka white space)
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‘ Elements of Syntax
» Expressions
if ... then begin ... ; ... end else begin ... ; ... end

= Type expressions
typexpr, -> typexpr,

= Declarations (in functional languages)
let pattern, = expr, in expr

= Statements (in imperative languages)
a=b+c

= Subprograms
let pattern, = let rec inner = ... in expr
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‘ Elements of Syntax

= Modules
= Interfaces
= Classes (for object-oriented languages)
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‘ Lexing and Parsing

= Converting strings to abstract syntax trees
done in two phases
= Lexing: Converting string (or streams of
characters) into lists (or streams) of
tokens (the “words” of the language)
= Specification Technique: Regular Expressions
= Parsing: Convert a list of tokens into an
abstract syntax tree
= Specification Technique: BNF Grammars
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’ Formal Language Descriptions

= Regular expressions, regular grammars,
finite state automata

= Context-free grammars, BNF grammars,
syntax diagrams

= Whole family more of grammars and
automata — covered in automata theory
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‘ Grammars

= Grammars are formal descriptions of which
strings over a given character set are in a
particular language

= Language designers write grammar

= Language implementers use grammar to
know what programs to accept

= Language users use grammar to know how
to write legitimate programs
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