Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

10/14/14

Two Problems

- Type checking
 - Question: Does exp. e have type τ in env Γ ?
 - Answer: Yes / No
 - Method: Type derivation
- Typability
 - Question Does exp. e have some type in env. Γ? If so, what is it?
 - Answer: Type τ / error
 Method: Type inference

10/14/14 2

Type Inference - Outline

- Begin by assigning a type variable as the type of the whole expression
- Decompose the expression into component expressions
- Use typing rules to generate constraints on components and whole
- Recursively find substitution that solves typing judgment of first subcomponent
- Apply substitution to next subcomponent and find substitution solving it; compose with first, etc.
- Apply comp of all substitution to orig. type var. to get answer

10/14/14 3

Type Inference - Example

What type can we give to

$$(fun x \rightarrow fun f \rightarrow f(f x))$$

 Start with a type variable and then look at the way the term is constructed

10/14/14 4

Type Inference - Example

First approximate:

$$\{ \} | - (fun x -> fun f -> f (f x)) : \alpha \}$$

Second approximate: use fun rule

$$\{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma$$

 $\{\} \mid - (\text{fun } x -> \text{fun } f -> f (f x)) : \alpha$

• Remember constraint $\alpha = (\beta \rightarrow \gamma)$

10/14/14

5

Type Inference - Example

Third approximate: use fun rule

$$\frac{\{f:\delta\;;\;x:\beta\}\;|-\;f\;(f\;x):\epsilon}{\{x:\beta\}\;|-\;(fun\;f\;->\;f\;(f\;x)):\gamma}\\ \{\;\}\;|-\;(fun\;x\;->\;fun\;f\;->\;f(f\;x)):\alpha$$

• $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$

10/14/14

Type Inference - Example

Fourth approximate: use app rule

10/14/14

- Fifth approximate: use var rule, get constraint $\delta = \varphi \rightarrow \varepsilon$, Solve with same
- Apply to next sub-proof

$$\frac{\{f:\delta; x:\beta\}|-f:\phi \to \varepsilon \quad \{f:\delta; x:\beta\}|-fx:\phi}{\{f:\delta; x:\beta\}|-(f(fx)):\varepsilon}$$

$$\frac{\{f:\delta; x:\beta\}|-(f(fx)):\gamma}{\{x:\beta\}|-(f(fx)):\gamma}$$

$$\{f:\delta; x:\beta\}|-(f(fx)):\alpha$$

$$\frac{\{f:\delta; x:\beta\}|-(f(fx)):\alpha}{\{x:\beta\}|-(f(fx)):\alpha}$$

$$\frac{\{f:\delta; x:\beta\}|-(f(fx)):\alpha}{\{x:\beta\}|-(f(fx)):\alpha}$$

$$\frac{\{f:\delta; x:\beta\}|-(f(fx)):\alpha}{\{x:\beta\}|-(f(fx)):\alpha}$$

Type Inference - Example

■ Current subst: $\{\delta = \phi \rightarrow \epsilon\}$

Type Inference - Example

■ Current subst: $\{\delta = \phi \rightarrow \epsilon\}$

Type Inference - Example

```
• Current subst: \{\delta = \varphi \rightarrow \epsilon\}
```


Type Inference - Example

Current subst: {ζ=ε, φ=ε} ο {δ=φ → ε}
 Var rule: Solve ζ→φ =φ→ε Unification

 $\alpha \equiv (\beta \rightarrow \gamma); \gamma \equiv (\delta \rightarrow \epsilon)$

Type Inference - Example

- Current subst: $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Apply to next sub-proof

...
$$\{f:\varepsilon \rightarrow \varepsilon; x:\beta\}|-x:\varepsilon$$

... $\{f:\varphi \rightarrow \varepsilon; x:\beta\}|-fx:\varphi$
 $\{f:\delta; x:\beta\}|-(f(fx)):\varepsilon$
 $\{x:\beta\}|-(funf->f(fx)):\gamma$
 $\{\}|-(funx->funf->f(fx)):\alpha$

• $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$

Type Inference - Example

- Current subst: $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Var rule: ε≡β

• $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$

14

Type Inference - Example

- Current subst: $\{\varepsilon = \beta\}$ o $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Solves subproof; return one layer

$$\frac{\{f: \epsilon \to \epsilon; x: \beta\}|-x: \epsilon}{\dots \{f: \phi \to \epsilon; x: \beta\}|-fx: \phi}$$

$$\frac{\{f: \delta; x: \beta\}|-\{f(fx)\}: \epsilon}{\{x: \beta\}|-\{f(fx)\}: \gamma}$$

$$\{\}|-\{f(f(fx))\}: \alpha$$

• $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$

13

15

17

Type Inference - Example

- Current subst: $\{\varepsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$
- Solves this subproof; return one layer

$$\frac{\{f: \varphi \to \varepsilon; x: \beta\}| - f x : \varphi}{\{f: \delta; x: \beta\}| - \{f(f x)\}: \varepsilon}$$

$$\frac{\{x: \beta\}| - \{f(f x)\}: \gamma}{\{\}| - \{f(f x) - \gamma\}: \gamma - \{\delta\}\}: \gamma}$$

$$\frac{\{g(f(f x)) - \gamma\}| - \{g(f x)\}: \gamma}{\{g(f x) - \gamma\}: \gamma - \{\delta\} - \gamma\}}$$

• $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$

16

Type Inference - Example

- Current subst: $\{\varepsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$
- Need to satisfy constraint $\gamma = (\delta \rightarrow \epsilon)$, given subst: $\gamma = ((\beta \rightarrow \beta) \rightarrow \beta)$

$${f : \delta ; x : β} | - (f (f x)) : ε$$

 ${x : β} | - (f un f -> f (f x)) : γ$
 ${} | - (f un x -> f un f -> f (f x)) : α$

• $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$

10/14/14

Type Inference - Example

Current subst:

$$\{ \gamma = ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta \}$$

Solves subproof; return one layer

$$\{\underline{f:\delta;x:\beta} \mid -(\underline{f(fx)}) : \varepsilon$$

$$\underline{\{x:\beta\} \mid -(\underline{fun f \rightarrow f(f x)}) : \gamma }$$

$$\{\} \mid -(\underline{fun x \rightarrow fun f \rightarrow f(f x)}) : \alpha$$

• $\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$

Type Inference - Example

Current subst:

$$\{ \gamma = ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta \}$$

• Need to satisfy constraint $\alpha = (\beta \rightarrow \gamma)$ given subst: $\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta))$

$$\frac{\{x : \beta\} \mid - (\text{fun } f \rightarrow f (f x)) : \gamma}{\} \mid - (\text{fun } x \rightarrow \text{fun } f \rightarrow f (f x)) : \alpha}$$

• $\alpha = (\beta \rightarrow \gamma);$

10/14/14

Type Inference - Example

Current subst:

$$\{\alpha = (\beta \to ((\beta \to \beta) \to \beta)), \\ \gamma = ((\beta \to \beta) \to \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \to \beta\}$$

Solves subproof; return on layer

$$\underline{\{x : \beta\}}$$
 |- (fun f -> f (f x)) : γ
{ } |- (fun x -> fun f -> f (f x)) : α

10/14/14 20

Type Inference - Example

Current subst:

$$\{\alpha = (\beta \to ((\beta \to \beta) \to \beta)), \\ \gamma = ((\beta \to \beta) \to \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \to \beta\}$$

• Done: $\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta))$

$$\{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}$$

10/14/14

Le

19

21

Type Inference Algorithm

Let infer $(\Gamma, e, \tau) = \sigma$

- Γ is a typing environment (giving polymorphic types to expression variables)
- e is an expression
- τ is a type (with type variables),
- σ is a substitution of types for type variables
- Idea: σ is the constraints on type variables necessary for $\Gamma \mid -e : \tau$
- Should have $\sigma(\Gamma) \mid -e : \sigma(\tau)$

10/14/14 22

Type Inference Algorithm

has_type (Γ , exp, τ) =

- Case exp of
 - Var ν --> return Unify{τ = freshInstance(Γ(ν))}
 Replace all quantified type vars by fresh ones
 - Const c --> return Unify{ τ = freshInstance ϕ } where Γ |- c : ϕ by the constant rules
 - fun *x* -> *e* -->
 - Let α , β be fresh variables
 - Let σ = infer ({x: α } + Γ , e, β)
 - Return Unify($\{\sigma(\tau) = \sigma(\alpha \rightarrow \beta)\}$) o σ

10/14/14

23

Type Inference Algorithm (cont)

- Case exp of
 - App $(e_1 e_2)$ -->
 - •Let α be a fresh variable
 - Let σ_1 = infer(Γ , e_1 , $\alpha \rightarrow \tau$)
 - Let σ_2 = infer($\sigma(\Gamma)$, e_2 , $\sigma(\alpha)$)
 - Return σ_2 o σ_1

10/14/14

Type Inference Algorithm (cont)

- Case exp of
 - If e_1 then e_2 else e_3 -->
 - Let σ_1 = infer(Γ , e_1 , bool)
 - Let σ_2 = infer($\sigma\Gamma$, e_2 , $\sigma_1(\tau)$)
 - Let $\sigma_3 = \inf(\sigma_2 \circ \sigma_1(\Gamma), e_2, \sigma_2 \circ \sigma(\tau))$
 - Return $\sigma_3 \circ \sigma_2 \circ \sigma_1$

10/14/14

25

Type Inference Algorithm (cont)

- Case exp of
 - let $x = e_1$ in e_2 -->
 - •Let α be a fresh variable
 - Let σ_1 = infer(Γ , e_1 , α)
 - Let $\sigma_2 =$

infer({x:GEN($\sigma_1(\Gamma)$, $\sigma_1(\alpha)$)} + $\sigma_1(\Gamma)$, e_2 , $\sigma_1(\tau)$)

Return σ₂ ο σ₁

10/14/14 26

Type Inference Algorithm (cont)

- Case exp of
 - let rec $x = e_1$ in e_2 -->
 - Let α be a fresh variable
 - Let σ_1 = infer($\{x: \alpha\} + \Gamma, e_1, \alpha\}$)
 - Let σ_2 = infer({x:GEN($\sigma_1(\Gamma)$, $\sigma_1(\alpha)$)} + $\sigma_1(\Gamma)$ }, e_2 , $\sigma_1(\tau)$)
 - Return $\sigma_2 \circ \sigma_1$

10/14/14

27

29

Type Inference Algorithm (cont)

- To infer a type, introduce type_of
- Let α be a fresh variable
- type_of (Γ, e) =
 - Let σ = infer (Γ, e, α)
 - Return $\sigma(\alpha)$
- Need an algorithm for Unif

10/14/14 28

Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

10/14/14

Simple Implementation Background

type term = Variable of string | Const of (string * term list)

let rec subst var_name residue term =
 match term with Variable name ->

if var_name = name then residue else term | Const (c, tys) ->

Const (c, List.map (subst var_name residue) tys);;

10/14/14

Unification Problem

Given a set of pairs of terms ("equations") $\{(s_1,\,t_1),\,(s_2,\,t_2),\,...,\,(s_n,\,t_n)\}$ (the *unification problem*) does there exist a substitution σ (the *unification solution*) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

10/14/14

31

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCAML
 - Can use a simplified version of algorithm
- Logic Programming Prolog
- Simple parsing

10/14/14 32

Unification Algorithm

- Let S = {(s₁, t₁), (s₂, t₂), ..., (s_n, t_n)} be a unification problem.
- Case S = { }: Unif(S) = Identity function
 (i.e., no substitution)
- Case $S = \{(s, t)\} \cup S'$: Four main steps

10/14/14

33

Unification Algorithm

- Delete: if s = t (they are the same term) then Unif(S) = Unif(S')
- Decompose: if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ (same f, same m!), then Unif(S) = Unif({(q_1, r_1), ..., (q_m, r_m)} \cup S')
- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x,s)} ∪ S')

10/14/14 34

Unification Algorithm

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - Let $\varphi = x \rightarrow t$
 - Let $\psi = \text{Unif}(\varphi(S'))$
 - Unif(S) = $\{x \mid \rightarrow \psi(t)\}\ o \ \psi$
 - Note: {x |→ a} o {y |→ b} = {y |→ ({x |→ a}(b))} o {x |→ a} if y not in a

10/14/14

35

Tricks for Efficient Unification

- Don't return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won't discuss these

10/14/14 36

Example

- x,y,z variables, f,g constructors
- $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

10/14/14

- x,y,z variables, f,g constructors
- S is nonempty
- $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

10/14/14 38

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), x)
- $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

10/14/14

39

41

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y))), x)
- Orient: (x, g(y,f(y)))
- $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$
- $-> \{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$

10/14/14

Example

- x,y,z variables, f,g constructors
- S -> {(f(x), f(g(y,z))), (x, g(y,f(y)))}

10/14/14

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(x), f(g(y,z)))
- S -> {(f(x), f(g(y,z))), (x, g(y,f(y)))}

10/14/14

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(x), f(g(y,z)))
- Decompose: (x, g(y,z))
- S -> {(f(x), f(g(y,z))), (x, g(y,f(y)))}
- $-> \{(x, g(y,z)), (x, g(y,f(y)))\}$

10/14/14

4/14 43

Example

- x,y,z variables, f,g constructors
- Pick a pair: (x, g(y,f(y)))
- Substitute: {x |-> g(y,f(y))}
- S -> {(x, g(y,z)), (x, g(y,f(y)))}
- -> {(g(y,f(y)), g(y,z))}
- With {x |-> g(y,f(y))}

10/14/14 4

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), g(y,z))
- S -> {(g(y,f(y)), g(y,z))}

With $\{x \mid \rightarrow g(y,f(y))\}$

10/14/14

Example

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), g(y,z))
- Decompose: (y, y) and (f(y), z)
- S -> {(g(y,f(y)), g(y,z))}
- -> {(y, y), (f(y), z)}

With $\{x \mid \rightarrow g(y,f(y))\}$

10/14/14

Example

- x,y,z variables, f,g constructors
- Pick a pair: (y, y)
- S -> {(y, y), (f(y), z)}

With $\{x \mid \rightarrow g(y,f(y))\}$

10/14/14

45

47

Example

- x,y,z variables, f,g constructors
- Pick a pair: (y, y)
- Delete
- S -> {(y, y), (f(y), z)}
- -> {(f(y), z)}

With $\{x \mid \rightarrow g(y,f(y))\}$

10/14/14

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(y), z)
- S -> {(f(y), z)}

With $\{x \mid \rightarrow g(y,f(y))\}$

10/14/14

49

51

53

Example

- x,y,z variables, f,g constructors
- Pick a pair: (f(y), z)
- Orient: (z, f(y))
- S -> {(f(y), z)}
- -> {(z, f(y))}

With $\{x \mid \rightarrow g(y,f(y))\}$

10/14/14 50

Example

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))
- S -> {(z, f(y))}

With $\{x \mid \rightarrow g(y,f(y))\}$

10/14/14

Example

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))
- Eliminate: {z|-> f(y)}
- S -> {(z, f(y))}
- -> { }

With $\{x \mid \rightarrow \{z \mid \rightarrow f(y)\} (g(y,f(y))) \}$ o $\{z \mid \rightarrow f(y)\}$

10/14/14

Example

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))
- Eliminate: {z|-> f(y)}
- S -> {(z, f(y))}
- -> { }

With $\{x \mid \rightarrow g(y,f(y))\}\ o \{(z \mid \rightarrow f(y))\}\$

10/14/14

Example

 $S = \{(f(x), f(g(y,z))), (g(y,f(y)),x)\}$ Solved by $\{x \mapsto g(y,f(y))\} \circ \{(z \mapsto f(y))\}$ $f(\underline{g(y,f(y))}) = f(g(y,\underline{f(y)}))$ x

and

$$g(y,f(y)) = \underline{g(y,f(y))}$$

10/14/14

54

Example of Failure: Decompose

- $S = \{(f(x,g(y)), f(h(y),x))\}$
- Decompose: (f(x,g(y)), f(h(y),x))
- S -> $\{(x,h(y)), (g(y),x)\}$
- Orient: (g(y),x)
- S -> {(x,h(y)), (x,g(y))}
- Eliminate: (x,h(y))
- S -> $\{(h(y), g(y))\}$ with $\{x \mid \rightarrow h(y)\}$
- No rule to apply! Decompose fails!

10/14/14

- $S = \{(f(x,g(x)), f(h(x),x))\}$
- Decompose: (f(x,g(x)), f(h(x),x))
- S -> $\{(x,h(x)), (g(x),x)\}$
- Orient: (g(y),x)
- S -> {(x,h(x)), (x,g(x))}
- No rules apply.

10/14/14 56

55

Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics

10/14/14 58

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

4

Syntax of English Language

■ Pattern 1

Subject	Verb
David	sings
The dog	barked
Susan	yawned

Pattern 2

Subject	Verb	Direct Object
David	sings	ballads
The professor	wants	to retire
The jury	found	the defendant guilty

10/14/14 59

10/14/14

Elements of Syntax

- Character set previously always ASCII, now often 64 character sets
- Keywords usually reserved
- Special constants cannot be assigned to
- Identifiers can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

10/14/14 61

Expressions

if ... then begin ...; ... end else begin ...; ... end

Type expressions

typexpr₁ -> typexpr₂

Declarations (in functional languages)

let $pattern_1 = expr_1$ in expr

Statements (in imperative languages)

a = b + c

Subprograms

let pattern₁ = let rec inner = ... in expr

10/14/14 62

Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

10/14/14

63

65

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
 - Specification Technique: Regular Expressions
 - Parsing: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars

10/14/14 64

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory

10/14/14

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

10/14/14 66