
10/15/14 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/15/14 2

Background for Unification

n  Terms made from constructors and variables (for
the simple first order case)

n  Constructors may be applied to arguments (other
terms) to make new terms

n  Variables and constructors with no arguments are
base cases

n  Constructors applied to different number of
arguments (arity) considered different

n  Substitution of terms for variables

10/15/14 3

Simple Implementation Background

type term = Variable of string
 | Const of (string * term list)

let rec subst var_name residue term =
 match term with Variable name ->
 if var_name = name then residue else term
 | Const (c, tys) ->
 Const (c, List.map (subst var_name residue)
 tys);;

10/15/14 4

Unification Problem

Given a set of pairs of terms (“equations”)
{(s1, t1), (s2, t2), …, (sn, tn)}

(the unification problem) does there exist
a substitution σ (the unification solution)
of terms for variables such that

σ(si) = σ(ti),
for all i = 1, …, n?

10/15/14 5

Uses for Unification

n  Type Inference and type checking
n  Pattern matching as in OCAML

n  Can use a simplified version of algorithm

n  Logic Programming - Prolog
n  Simple parsing

10/15/14 6

Unification Algorithm

n  Let S = {(s1= t1), (s2= t2), …, (sn= tn)} be
a unification problem.

n  Case S = { }: Unif(S) = Identity function
(i.e., no substitution)

n  Case S = {(s, t)} ∪ S’: Four main steps

10/15/14 7

Unification Algorithm

n  Delete: if s = t (they are the same term)
then Unif(S) = Unif(S’)

n  Decompose: if s = f(q1, … , qm) and
t =f(r1, … , rm) (same f, same m!), then

 Unif(S) = Unif({(q1, r1), …, (qm, rm)} ∪ S’)
n  Orient: if t = x is a variable, and s is not a

variable, Unif(S) = Unif ({(x = s)} ∪ S’)

10/15/14 8

Unification Algorithm

n Eliminate: if s = x is a variable, and
x does not occur in t (the occurs
check), then
n Let ϕ = {x → t}
n Let ψ = Unif(ϕ(S’))
n Unif(S) = {x → ψ(t)} o ψ

n Note: {x → a} o {y → b} =
{y → ({x → a}(b))} o {x → a} if y not in
a

10/15/14 9

Tricks for Efficient Unification

n  Don’t return substitution, rather do it
incrementally

n  Make substitution be constant time
n  Requires implementation of terms to use

mutable structures (or possibly lazy
structures)

n  We won’t discuss these

10/15/14 10

Example

n  x,y,z variables, f,g constructors

n  Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} = ?

10/15/14 11

Example

n  x,y,z variables, f,g constructors
n  S = {(f(x) = f(g(f(z),y))), (g(y,y) = x)} is

nonempty

n  Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} = ?

10/15/14 12

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (g(y,y) = x)

n  Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} = ?

10/15/14 13

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (g(y,y)) = x)
n  Orient: (x = g(y,y))

n  Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} =
 Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))}
by Orient

10/15/14 14

Example

n  x,y,z variables, f,g constructors

n  Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} = ?

10/15/14 15

Example

n  x,y,z variables, f,g constructors
n  {(f(x) = f(g(f(z),y))), (x = g(y,y))} is non-

empty

n  Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} = ?

10/15/14 16

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (x = g(y,y))

n  Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} = ?

10/15/14 17

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (x = g(y,y))
n  Eliminate x with substitution {x→ g(y,y)}

n  Check: x not in g(y,y) .
n  Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} = ?

10/15/14 18

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (x = g(y,y))
n  Eliminate x with substitution {x→ g(y,y)}

n  Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} =
 Unify {(f(g(y,y)) = f(g(f(z),y)))}
 o {x→ g(y,y)}

10/15/14 19

Example

n  x,y,z variables, f,g constructors

n  Unify {(f(g(y,y)) = f(g(f(z),y)))}
 o {x→ g(y,y)} = ?

10/15/14 20

Example

n  x,y,z variables, f,g constructors
n  {(f(g(y,y)) = f(g(f(z),y)))} is non-empty

n  Unify {(f(g(y,y)) = f(g(f(z),y)))}
 o {x→ g(y,y)} = ?

10/15/14 21

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (f(g(y,y)) = f(g(f(z),y)))

n  Unify {(f(g(y,y)) = f(g(f(z),y)))}
 o {x→ g(y,y)} = ?

10/15/14 22

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
n  Decompose:(f(g(y,y)) = f(g(f(z),y)))

becomes {(g(y,y) = g(f(z),y))}

n  Unify {(f(g(y,y)) = f(g(f(z),y)))}
 o {x→ g(y,y)} =
 Unify {(g(y,y) = g(f(z),y))} o {x→ g(y,y)}

10/15/14 23

Example

n  x,y,z variables, f,g constructors
n  {(g(y,y) = g(f(z),y))} is non-empty

n  Unify {(g(y,y) = g(f(z),y))}

o {x→ g(y,y)} = ?

10/15/14 24

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (g(y,y) = g(f(z),y))

n  Unify {(g(y,y) = g(f(z),y))}

o {x→ g(y,y)} = ?

10/15/14 25

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
n  Decompose: (g(y,y)) = g(f(z),y)) becomes

{(y = f(z)); (y = y)}

n  Unify {(g(y,y) = g(f(z),y))} o {x→ g(y,y)} =
 Unify {(y = f(z)); (y = y)} o {x→ g(y,y)}

10/15/14 26

Example

n  x,y,z variables, f,g constructors

n  Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} = ?

10/15/14 27

Example

n  x,y,z variables, f,g constructors
n  {(y = f(z)); (y = y)} o {x→ g(y,y) is non-

empty

n  Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} = ?

10/15/14 28

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (y = f(z))

n  Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} = ?

10/15/14 29

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (y = f(z))
n  Eliminate y with {y → f(z)}

n  Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} =
Unify {(f(z) = f(z))}

 o {y → f(z)} o {x→ g(y,y)}=
 Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))}

10/15/14 30

Example

n  x,y,z variables, f,g constructors

n  Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))} = ?

10/15/14 31

Example

n  x,y,z variables, f,g constructors
n  {(f(z) = f(z))} is non-empty

n  Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))} = ?

10/15/14 32

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (f(z) = f(z))

n  Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))} = ?

10/15/14 33

Example

n  x,y,z variables, f,g constructors
n  Pick a pair: (f(z) = f(z))
n  Delete
n  Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))} =
 Unify {} o {y → f(z); x→ g(f(z), f(z))}

10/15/14 34

Example

n  x,y,z variables, f,g constructors

n  Unify {} o {y → f(z); x→ g(f(z), f(z))} = ?

10/15/14 35

Example

n  x,y,z variables, f,g constructors
n  {} is empty
n  Unify {} = identity function
n  Unify {} o {y → f(z); x→ g(f(z), f(z))} =

{y → f(z); x→ g(f(z), f(z))}

10/15/14 36

Example

n  Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} =
{y → f(z); x→ g(f(z), f(z))}

f(x) = f(g(f(z), y))
→ f(g(f(z), f(z))) = f(g(f(z), f(z))) .

g(y , y) = x .

→ g(f(z),f(z)) = g(f(z), f(z)) .

10/15/14 37

Example of Failure: Decompose

n  Unify{(f(x,g(y)) = f(h(y),x))}
n  Decompose: (f(x,g(y)) = f(h(y),x))
n  = Unify {(x = h(y)), (g(y) = x)}
n  Orient: (g(y) = x)
n  = Unify {(x = h(y)), (x = g(y))}
n  Eliminate: (x = h(y))
n  Unify {(h(y), g(y))} o {x → h(y)}
n  No rule to apply! Decompose fails!

10/15/14 38

Example of Failure: Occurs Check

n  Unify{(f(x,g(x)) = f(h(x),x))}
n  Decompose: (f(x,g(x)) = f(h(x),x))
n  = Unify {(x = h(x)), (g(x) = x)}
n  Orient: (g(y) = x)
n  = Unify {(x = h(x)), (x = g(x))}
n  No rules apply.

Major Phases of a Compiler

Source Program
Lex

Tokens
Parse

Abstract Syntax
Semantic
Analysis

Symbol Table
Translate

Intermediate
Representation

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction
Selection

Optimized Machine-Specific
Assembly Language

Optimize

Unoptimized Machine-
Specific Assembly Language

Emit code

Assembler

Relocatable
 Object Code

Assembly Language

Linker
Machine

Code

Optimize
Optimized IR

10/15/14 40

Meta-discourse

n  Language Syntax and Semantics
n  Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
n  Semantics
 - Natural Semantics
 - Transition Semantics

10/15/14 41

Language Syntax

n  Syntax is the description of which strings of
symbols are meaningful expressions in a
language

n  It takes more than syntax to understand a
language; need meaning (semantics) too

n  Syntax is the entry point

10/15/14 42

Syntax of English Language

n  Pattern 1

n  Pattern 2

10/15/14 43

Elements of Syntax

n  Character set – previously always ASCII,
now often 64 character sets

n  Keywords – usually reserved
n  Special constants – cannot be assigned to
n  Identifiers – can be assigned to
n  Operator symbols
n  Delimiters (parenthesis, braces, brackets)
n  Blanks (aka white space)

10/15/14 44

Elements of Syntax

n  Expressions
 if ... then begin ... ; ... end else begin ... ; ... end

n  Type expressions
 typexpr1 -> typexpr2
n  Declarations (in functional languages)
 let pattern1 = expr1 in expr
n  Statements (in imperative languages)
 a = b + c
n  Subprograms
 let pattern1 = let rec inner = … in expr

10/15/14 45

Elements of Syntax

n  Modules
n  Interfaces
n  Classes (for object-oriented languages)

10/15/14 46

Lexing and Parsing

n  Converting strings to abstract syntax trees
done in two phases
n  Lexing: Converting string (or streams of

characters) into lists (or streams) of
tokens (the “words” of the language)
n  Specification Technique: Regular Expressions

n  Parsing: Convert a list of tokens into an
abstract syntax tree
n  Specification Technique: BNF Grammars

10/15/14 47

Formal Language Descriptions

n  Regular expressions, regular grammars,
finite state automata

n  Context-free grammars, BNF grammars,
syntax diagrams

n  Whole family more of grammars and
automata – covered in automata theory

10/15/14 48

Grammars

n  Grammars are formal descriptions of which
strings over a given character set are in a
particular language

n  Language designers write grammar
n  Language implementers use grammar to

know what programs to accept
n  Language users use grammar to know how

to write legitimate programs

