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Basic Linear Algebra Subprograms

@ Basic Linear Algebra Subprograms (BLAS) are building
blocks for many other matrix computations

@ BLAS encapsulate basic operations on vectors and
matrices so they can be optimized for particular computer
architecture while high-level routines that call them remain
portable

@ BLAS offer good opportunities for optimizing utilization of
memory hierarchy

@ Generic BLAS are available from net1ib, and many
computer vendors provide custom versions optimized for
their particular systems
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Simplifying Assumptions

@ For problem of dimension n using p processes, assume p
(or in some cases ,/p) divides n

@ For 2-D mesh, assume p is perfect square and mesh is
VP X /P

@ For hypercube, assume p is power of two

@ Assume matrices are square, n x n, not rectangular

@ Dealing with general cases where these assumptions do
not hold is straightforward but tedious, and complicates
notation

@ Caveat: your mileage may vary, depending on
assumptions about target system, such as level of
concurrency in communication

Michael T. Heath Parallel Numerical Algorithms

| P
nner Product 5 allel Algorithm

Parallel Algorithm

Partition

@ Fori=1,...,n, fine-grain task i stores z; and y;, and
computes their product z; y;

Communicate

@ Sum reduction over n fine-grain tasks

(oo Co-fao-(o-{n--()
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0 Inner Product
e Outer Product
e Matrix-Vector Product

e Matrix-Matrix Product
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Examples of BLAS

Level Work Examples Function

1 O(n) saxpy Scalar x vector + vector
sdot Inner product
snrm2 Euclidean vector norm

2 O(n?) sgemv Matrix-vector product
strsv Triangular solution
sger Rank-one update

3 O(®) sgemm Matrix-matrix product
strsm Multiple triang. solutions
ssyrk Rank-k update
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Inner Product

Inner Product

@ Inner product of two n-vectors x and y given by

n
VCT?/ = Z T Yi
i=1

@ Computation of inner product requires n multiplications
and n — 1 additions

@ For simplicity, model serial time as
Ty =ten

where t. is time for one scalar multiply-add operation
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Inner Product

Fine-Grain Parallel Algorithm

Z = ZiYi { local scalar product }

reduce z across all tasks { sum reduction }
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Inner Product Inner Product

Parallel Algorithm Parallel Algorithm

Agglomeration and Mapping Coarse-Grain Parallel Algorithm

Agglomerate

@ Combine k components of both « and y to form each

coarse-grain task, which computes inner product of these o ﬂ?[Ti]y[fz] { local inner product }
subvectors
@ Communication becomes sum reduction over n/k reduce z across all processes { sum reduction }

coarse-grain tasks
Map

@ Assign (n/k)/p coarse-grain tasks to each of p processes,
for total of n/p components of  and y per process

[:c[,;] means subvector of  assigned to process i by mapping}

OO OISO OROEO 0
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Inner Product . A Inner Product

Parallel Algorithm
Scalabi
Optimality Optimality

Performance Scalability for 1-D Mesh

@ Time for computation phase is
@ For 1-D mesh, total time is

Tcomp =t n/p
Ty, =t n/p+ (ts +tw) (p— 1)
regardless of network
) ] o ) @ To determine isoefficiency function, set
@ Depending on network, time for communication phase is

o 1-D mesh: Teomm = (ts +tw) (p — 1) n
@ 2-Dmesh: Teomm = (ts +tw)2(y/p— 1) fem
o hypercube: Teomm = (ts + ty) logp

Q

E(pTp)
E (t(‘n + (ts‘ + tw)p (p - 1))

Q

which holds if n = ©(p?), so isoefficiency function is ©(p?),
@ For simplicity, ignore cost of additions in reduction, which is since Ty = O(n)
usually negligible
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Inner Product Inner Product

Scalability for 2-D Mesh Scalability for Hypercube

@ For 2-D mesh, total time is @ For hypercube, total time is
Ty =ten/p+ (ts +tw) 2(y/p— 1) Ty =ten/p+ (ts + tw) logp
@ To determine isoefficiency function, set @ To determine isoefficiency function, set
ten = E (ten + (ts + tw) p 2(y/p — 1)) ten = E (ten + (ts + tw) p logp)
which holds if n = ©(p3/?, so isoefficiency function is which holds if n = ©(p logp), so isoefficiency function is
O(p3/?), since Ty = O(n) O(p logp), since T = O(n)
1]
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Inner Product Inner Product
Parallel orithm

Oplimalit)‘/ Optimalit)‘/

Optimality for 1-D Mesh Optimality for 1-D Mesh

@ To determine optimal number of processes for given n,
take p to be continuous variable and minimize 7, with
respect to p

@ For 1-D mesh @ If n < (ts + tw)/tc, then only one process should be used
d @ Substituting optimal p into formula for 7}, shows that
7 _ P
T = dp {tc /v (s +tw) (0 1)] optimal time to compute inner product grows as /n with

—ten/p?+ (ts +ty) =0 increasing n on 1-D mesh

implies that optimal number of processes is

s+ tw 1]
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Inner Product

Optimality for Hypercube

@ For hypercube

d
! _ .
T, = o ten/p+ (ts +tw) logp
= —ten/p?+ (ts+tw)/p=0

implies that optimal number of processes is

" tem
P

and optimal time grows as log n with increasing n
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Outer Product

Parallel Algorithm

Parallel Algorithm

Partition
@ Fori,j=1,...,n,fine-grain task (7, j) computes and
stores z;; = x; y;, yielding 2-D array of n? fine-grain tasks

@ Assuming no replication of data, at most 2n fine-grain
tasks store components of « and y, say either
o for some j, task (i, j) stores x; and task ( j, ) stores y;, or
o task (i,7) storesboth z; and y;,i =1,...,n

Communicate

@ Fori=1,...,n,task that stores z; broadcasts it to all other
tasks in ith task row

@ Forj=1,...,n, task that stores y; broadcasts it to all
other tasks in jth task column
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Outer Product ??aralle\ Algorith

Fine-Grain Parallel Algorithm

broadcast x; to tasks (i, k), k=1,...,n { horizontal broadcast }

broadcast y; to tasks (k,j), k=1,...,n  {vertical broadcast }

2ij = T4y { local scalar product }
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Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

2-D Agglomeration

@ Each task that stores portion of = must broadcast its
subvector to all other tasks in its task row

@ Each task that stores portion of y must broadcast its
subvector to all other tasks in its task column
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Outer Product

Quter Product

@ Outer product of two n-vectors « and y is n x n matrix
Z = zy” whose (i, j) entry z; = z;y;

@ For example,
T
T Y1 r1yyr T1Yy2 T1Y3

T2 Y2 = |T2Y1 T2Y2 T2Y3
r3 Ys T3Yr T3Y2 T3Y3

@ Computation of outer product requires n? multiplications,
so model serial time as

where t. is time for one scalar multiplication
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Parallel Algorithm
eration Schemes
ity

Fine-Grain Tasks and Communication

Outer Product
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Outer Product

Agglomeration

Agglomerate

With n x n array of fine-grain tasks, natural strategies are

@ 2-D: Combine k x k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)? coarse-grain tasks

@ 1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

@ 1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks
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Parallel Algorithrr
Agglomeration Schemes
Scalability

Outer Product

2-D Agglomeration
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tion Schemes

Outer Product o Outer Product

1-D Agglomeration 1-D Column Agglomeration

X1V

XV

@ If either x or y stored in one task, then broadcast required
to communicate needed values to all other tasks

X3Vs

@ If either = or y distributed across tasks, then multinode
broadcast required to communicate needed values to other
tasks

R

XV

OIOIOIOION0

Xl

1]
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Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product Outer Product

1-D Row Agglomeration

SISISISIOIS
) @) @) () () () m

T @ 2-D: Assign (n/k)?/p coarse-grain tasks to each of p
@ @ @ @ @ @ processes using any desired mapping in each dimension,
; treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

o) @) () @) ) : i
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Mapping
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Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product Outer Product

1-D Row Agglomeration with Block Mapping Coarse-Grain Parallel Algorithm

() () (o) () () (o)
X1Vs
PO E
&) @) &) &) &)
X, XY
@O ®E
o) @) ) () () o)
() () () () () ()
Q [Z[i]m means submatrix of Z assigned to process (i, j) by
Xe¥s )
1] mapping | 1]

broadcast z;; to ith process row { horizontal broadcast }

broadcast y; ; to jth process column { vertical broadcast }

Zi) = m[i]y[Tj] { local outer product }
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Outer Product

Scalability

@ Time for computation phase is
Tcomp = tc n2/p
regardless of network or agglomeration scheme

@ For 2-D agglomeration on 2-D mesh, communication time
is at least

Teomm = (ts + tw n/\/ﬁ) (\/17) - 1)

assuming broadcasts can be overlapped
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Outer Product
Scalability

Scalability for Hypercube

@ Total time for hypercube is at least

T, tC7z2/p+(t5+tu,.7z/\/p7)(logp)/2

ten®/p+ts (logp)/2 + twn (logp)/(2y/P)

@ To determine isoefficiency function, set

ten? x E (ten® +tsp (logp)/2 + twn+/p(logp)/2)

which holds for large p if n = ©(,/p logp), so isoefficiency
function is ©(p (log p)?), since T1 = O(n?)
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Outer Product

Scalability for 1-D Mesh

@ For 1-D mesh, total time is at least

T, = t. n2/p+ (ts +tyn/p) (p—1)
tan/p+tSp+ tun

Q

@ To determine isoefficiency function, set
ten? = E (ten® + typ? 4+ tynp)

which holds if n = ©(p), so isoefficiency function is ©(p?),
since Ty = O(n?)
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Matrix-Vector Product

Matrix-Vector Product

@ Consider matrix-vector product
y=Ax
where A is n x n matrix and « and y are n-vectors

@ Components of vector y are given by

n

Yi = § ajjxj, i=1,...,n
Jj=1

@ Each of n components requires n multiply-add operations,
so model serial time as

T =t n?
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Outer Product

Scalability for 2-D Mesh

@ Total time for 2-D mesh is at least

t(tnz/p+ (ts J"tw n/\/i)) (\/ﬁf 1)
ten?/p+ts/p+twn

Tp

Q

@ To determine isoefficiency function, set
ten?~E (te n? + t3p3/2 +tynp)

which holds for large p if n = ©(p), so isoefficiency function
is ©(p?), since Ty = O(n?)
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Outer Product parallel HH”‘!,

Scalability

Scalability for 1-D mesh

@ Depending on network, time for communication phase with
1-D agglomeration is at least

o 1-D mesh: Tromm = (ts + twn/p) (p — 1)
o 2-D mesh: Tiomm = (ts + twn/p) 2(yp — 1)
o hypercube: Teomm = (ts + t n/p) logp

assuming broadcasts can be overlapped
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Outer Product

Memory Requirements

@ With either 1-D or 2-D algorithm, straightforward
broadcasting of « or y could require as much total memory
as replication of entire vector in all processes

@ Memory requirements can be reduced by circulating
portions of & or y through processes in ring fashion, with
each process using each portion as it passes through, so
that no process need store entire vector at once
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Parallel Algorithm

Matrix-Vector Product allon Schemes

Parallel Algorithm

Partition

@ Fori,j=1,...,n, fine-grain task (i, j) stores a;; and
computes a;; z;, yielding 2-D array of n? fine-grain tasks

@ Assuming no replication of data, at most 2n fine-grain
tasks store components of « and y, say either
o for some j, task (j,i) stores z; and task (i, j) stores y;, or
o task (i,7) stores both z; and y;,i =1,...,n
Communicate

@ Forj=1,...,n, task that stores z; broadcasts it to all
other tasks in jth task column

@ Fori=1,...,n, sum reduction over ith task row gives y;
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Matrix-Vector Product
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Seala
Scalability

Agglomeration

Agglomerate

With n. x n array of fine-grain tasks, natural strategies are

@ 2-D: Combine k x k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)? coarse-grain tasks

@ 1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

@ 1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product

2-D Agglomeration

Matrix-Vector Product

Fine-Grain Parallel Algorithm

broadcast z; to tasks (k,j), k=1,...,n  { vertical broadcast }
Yi = Q5 Tj { local scalar product }

reduce y; across tasks (i, k), k=1,...,n {horizontal sum reduction }

1]
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Seala
Scalability

2-D Agglomeration

@ Subvector of « broadcast along each task column

@ Each task computes local matrix-vector product of
submatrix of A with subvector of

@ Sum reduction along each task row produces subvector of
result y

1]
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Parallel Algorithm

Matrix-Vector Product fgg"’mf’?“"" SECIED
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product

1-D Column Agglomeration
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1-D Agglomeration
1-D column agglomeration

@ Each task computes product of its component of x times
its column of matrix, with no communication required

@ Sum reduction across tasks then produces y

1-D row agglomeration

@ If x stored in one task, then broadcast required to
communicate needed values to all other tasks

o If  distributed across tasks, then multinode broadcast
required to communicate needed values to other tasks

@ Each task computes inner product of its row of A with
entire vector x to produce its component of y 1]
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Parallel Algorithm

Matrix-Vector Product | Adglomeration Schemes

1-D Row Agglomeration
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product S
Scalability

Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product S
Scalability

1-D Agglomeration

Column and row algorithms are dual to each other

@ Column algorithm begins with communication-free local
saxpy computations followed by sum reduction

@ Row algorithm begins with broadcast followed by
communication-free local sdot computations
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Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product q
Scalability

Mapping

Map

@ 2-D: Assign (n/k)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

1]
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Parallel Algorith

Matrix-Vector Product Qpala
Scalability

2-D Agglomeration with Block Mapping
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Matrix-Vector Product

PEOOOE .
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Matrix-Vector Product

1-D Column Agglomeration with Block Mapping

a.,tx g, % "f‘ E

Michael T. Heath Parallel Numerical Algorithms

Matrix-Vector Product

Coarse-Grain Parallel Algorithm

broadcast x| to jth process column  { vertical broadcast }
Y] = Au 1T { local matrix-vector product }

reduce y;) across ith process row { horizontal sum reduction }

1]
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Parallel orithrr

Matrix-Vector Product Scalability

Scalability

@ Time for computation phase is
Tcomp =t n2/p
regardless of network or agglomeration scheme

@ For 2-D agglomeration on 2-D mesh, each of two
communication phases requires time

(t5+tw7l/\/]7?)(\/ﬁ*1)%t,;\/f)+twn

so total time is

T, ~ ten?/p+2(ts /D +twn)
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Scalability for 2-D Mesh

@ To determine isoefficiency function, set
ten® = E (ten® + 2(ts p*? + twnp))

which holds if n = ©(p), so isoefficiency function is ©(p?),
since Ty = ©(n?)

1]
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Matrix-Vector Product

Scalability for Hypercube

@ Total time for hypercube is

T te nZ/er (ts +twn/\/p) logp

ten?/p+ts logp + twn (logp)/\/p

@ To determine isoefficiency function, set
ten? = E (ten® +tsp logp +tyn /D logp)

which holds for large p if n = ©(,/p logp), so isoefficiency
function is ©(p (log p)?), since T1 = O(n?)
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Matrix-Vector Product

Scalability for 1-D Mesh

@ To determine isoefficiency function, set
ten? = E (ten® 4+t p* 4 tynp)

which holds if n = ©(p), so isoefficiency function is ©(p?),
since Ty = ©(n?)
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Matrix-Matrix Product

Matrix-Matrix Product

@ Matrix-matrix product can be viewed as
e n?inner products, or
e sum of n outer products, or
e n matrix-vector products

and each viewpoint yields different algorithm
@ One way to derive parallel algorithms for matrix-matrix

product is to apply parallel algorithms already developed
for inner product, outer product, or matrix-vector product

@ We will develop parallel algorithms for this problem directly,
however
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Matrix-Matrix Product

Parallel Algorithm

Communicate

@ Broadcast entries of jth column of A horizontally along
each task row in jth layer

@ Broadcast entries of ith row of B vertically along each task
column in ith layer

@ Fori,j =1,...,n,result ¢;; is given by sum reduction over
tasks (i,7,k), k=1,...,n
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Matrix-Vector Product

Scalability for 1-D Mesh

@ Depending on network, time for communication phase with
1-D agglomeration is at least

o 1-D mesh: Teomm = (ts + twn/p) (p— 1)
o 2-D mesh: Teomm = (ts + twn/p) 2(y/p — 1)
o hypercube: Tiomm = (ts + twn/p) logp

@ For 1-D agglomeration on 1-D mesh, total time is at least

T, = ten®/p+(ts+twn/p) (p—1)
ten?/p+top+tun

Q

Michael T. Heath Parallel Numerical Algorithms

Parallel orithm

Matrix-Matrix Product

Matrix-Matrix Product

@ Consider matrix-matrix product
C=AB
where A, B, and result C are n x n matrices

@ Entries of matrix C are given by
n
Cij = Zaikbkjs L,j=1,...,n
k=1

@ Each of n? entries of C requires n multiply-add operations,
so model serial time as
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Matrix-Matrix Product

Parallel Algorithm

Partition

@ Fori,j,k=1,...,n, fine-grain task k
(i, 4, k) computes product a; by, yielding
3-D array of n? fine-grain tasks i
@ Assuming no replication of data, at most =
3n? fine-grain tasks store entries of A, B, J
or C, say task (i, j, j) stores a;;, task
(4, 7,1) stores b;;, and task (4, j, k) stores
¢ijfori,j =1,...,n and some fixed k

@ We refer to subsets of tasks along 4, j, and k& dimensions
as rows, columns, and layers, respectively, so kth column
of A and kth row of B are stored in kth layer of tasks
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Parallel Algorithm

ation Schemes

Matrix-Matrix Product

Fine-Grain Algorithm

broadcast a;, to tasks (i,q,k), ¢ =1,...,n  { horizontal broadcast }
broadcast by to tasks (¢,j,k), ¢=1,...,n  { vertical broadcast }
Cij = Qikbk; { local scalar product }

reduce c;; across tasks (4,5,¢), ¢=1,...,n {lateral sum reduction }
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Matrix-Matrix Product

Agglomeration

orithm
tion Schemes

Matrix-Matrix Product

Mapping

Agglomerate
With n x n x n array of fine-grain tasks, natural strategies are

@ 3-D: Combine ¢ x ¢ x g subarray of fine-grain tasks

@ 2-D: Combine ¢ x ¢ x n subarray of fine-grain tasks,
eliminating sum reductions

@ 1-D column: Combine n x 1 x n subarray of fine-grain
tasks, eliminating vertical broadcasts and sum reductions

@ 1-D row: Combine 1 x n x n subarray of fine-grain tasks,
eliminating horizontal broadcasts and sum reductions
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Parallel Algorithm
Agglomeration Schemes

Matrix-Matrix Prouct | 2ol

Agglomeration with Block Mapping

1-D row 1-D col 2-D 3-D
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Matrix-Matrix Product

Agglomeration with Block Mapping

—
Ay Byt ApByy | [ Ay Bt A, B,

1-D column:
Ay Byt Azz&| A Bt AnBy
‘Au Au‘ ‘Bu BIZ‘ ‘ Au?u*“‘u%n AIlBiIZ+AIZB;lz ‘
1-D row: = i T + T
lAll Azzl an Bzzl lAle11+Azszl Ay Bt AnBy l
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Parallel Algorithm
Agglomeration Schemes

Matrix-Matrix Prouct | 2ol

Fox Algorithm

@ Algorithm just described requires excessive memory, since
each process accumulates /p blocks of both A and B

@ One way to reduce memory requirements is to

e broadcast blocks of A successively across process rows,
and
e circulate blocks of B in ring fashion vertically along process
columns
step by step so that each block of B comes in conjunction
with appropriate block of A broadcast at that same step

@ This algorithm is due to Fox et al.

Map
Corresponding mapping strategies are
@ 3-D: Assign (n/q)?/p coarse-grain tasks to each of p

processes using any desired mapping in each dimension,
treating target network as 3-D mesh

@ 2-D: Assign (n/q)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D

mesh E
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Parallel Algorithm
Agglomeration Schemes

Matrix-Matrix Prouct | 2ol

Coarse-Grain 3-D Parallel Algorithm

broadcast Ay; ) to ith process row { horizontal broadcast }
broadcast By, to jth process column  { vertical broadcast }
C[,;][]-] = A[i][k]B[k][j] { local matrix product }

reduce Cf;)[,] across process layers { lateral sum reduction }
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Matrix-Matrix Product goly

Coarse-Grain 2-D Parallel Algorithm

all-to-all bcast Ay;j;; in ith process row { horizontal broadcast }
all-to-all beast By;yj;; in jth process column  { vertical broadcast }
Cljj) =0

fork=1,...,p
Ciitr1 = Cits) + Al Bris)
end

{ sum local products }

1]
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Parallel Algorithm
Agglomeration Schemes
Scalability
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Cannon Algorithm

@ Another approach, due to Cannon, is to circulate blocks of
B vertically and blocks of A horizontally in ring fashion

@ Blocks of both matrices must be initially aligned using
circular shifts so that correct blocks meet as needed

@ Requires even less memory than Fox algorithm, but trickier
to program because of shifts required

@ Performance and scalability of Fox and Cannon algorithms
are not significantly different from that of previous 2-D
algorithm, but memory requirements are much less
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Scalability for 3-D Agglomeration

@ For 3-D agglomeration, computing each of p blocks Cj;y ;5
requires matrix-matrix product of two (n/¢/p) x (n/¥/p)
blocks, so

Tcomp =t (,n//\:i/ﬁ):; =1 n3/p
@ On 3-D mesh, each broadcast or reduction takes time
(ts + tw (n/\d/ﬁ)z) (p—1)~ts p]/:S + tw 712/1)1/3
@ Total time is therefore

T, =tn/p+ 3ty p'/3 + 3ty nz/pl/?’
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Scalability for 2-D Agglomeration

@ For 2-D agglomeration, computation of each block Cj;j;;

requires ,/p matrix-matrix products of (n/\/p) x (n/\/p)
blocks, so

Teomp = ter/D (n/\/ﬁ)3 =t.n/p
@ For 2-D mesh, communication time for broadcasts along
rows and columns is
Tcomm = (ts + tw nQ/p)(\/ﬁ - 1)
tor/D + tw TLQ/\/ﬁ

assuming horizontal and vertical broadcasts can overlap
(multiply by two otherwise)

Q

Michael T. Heath Parallel Numerical Algorithms

arallel Algorithm

Scalability

Matrix-Matrix Product

Scalability for 1-D Agglomeration

@ For 1-D agglomeration on 1-D mesh, total time is

T, = t. n3/p+ (ts +twn?/p) (p—1)
t¢n3/p+tsp+ t 12

Q

@ To determine isoefficiency function, set
ten® = E (ten® + typ? 4+ tyn?p)

which holds for large p if n = ©(p), so isoefficiency function
is ©(p®) since T} = O(n?)
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Scalability for 3-D Agglomeration

@ To determine isoefficiency function, set
ten® & B (ten® + 3, p*3 + 3ty n*p?'%)

which holds for large p if n = ©(p*/?), so isoefficiency
function is ©(p?), since 71 = ©(n?)

@ For hypercube, total time becomes
T, = ten®/p + ts logp + tw n?(log p) /p*/>

which leads to isoefficiency function of ©(p (log p)?)
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Scalability for 2-D Agglomeration

@ Total time for 2-D mesh is
T~ ten®/p+tsy/D+ twn?//D
@ To determine isoefficiency function, set
ten® & E (ten® 4+t p*? + tyn®yp)

which holds for large p if » = ©(,/p), so isoefficiency
function is ©(p*/?), since T, = O(n?)
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Communication vs. Memory Tradeoff

@ Communication volume for 2-D algorithms for matrix-matrix
product is optimal, assuming no replication of storage

@ If explicit replication of storage is allowed, then lower
communication volume is possible

@ Block-recursive 3-D algorithm can reduce communication
volume by factor of p~1/¢ while increasing memory usage
by factor of p!/3

@ Recently, “2.5-D” algorithms have been developed that
interpolate between 2-D and 3-D algorithms, using partial
storage replication to reduce communication volume to
whatever extent available memory allows
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