Parallel Numerical Algorithms
Chapter 5 — Vector and Matrix Products

Prof. Michael T. Heath

Department of Computer Science
University of lllinois at Urbana-Champaign

CS 554/ CSE 512

Michael T. Heath Parallel Numerical Algorithms

Basic Linear Algebra Subprograms

@ Basic Linear Algebra Subprograms (BLAS) are building
blocks for many other matrix computations

@ BLAS encapsulate basic operations on vectors and
matrices so they can be optimized for particular computer
architecture while high-level routines that call them remain
portable

@ BLAS offer good opportunities for optimizing utilization of
memory hierarchy

@ Generic BLAS are available from net1ib, and many
computer vendors provide custom versions optimized for
their particular systems

Michael T. Heath Parallel Numerical Algorithms

Simplifying Assumptions

@ For problem of dimension n using p processes, assume p
(or in some cases ,/p) divides n

@ For 2-D mesh, assume p is perfect square and mesh is
VP X /P

@ For hypercube, assume p is power of two

@ Assume matrices are square, n x n, not rectangular

@ Dealing with general cases where these assumptions do
not hold is straightforward but tedious, and complicates
notation

@ Caveat: your mileage may vary, depending on
assumptions about target system, such as level of
concurrency in communication

Michael T. Heath Parallel Numerical Algorithms

| P
nner Product 5 allel Algorithm

Parallel Algorithm

Partition

@ Fori=1,...,n, fine-grain task i stores z; and y;, and
computes their product z; y;

Communicate

@ Sum reduction over n fine-grain tasks

(oo Co-fao-(o-{n--()

Michael T. Heath Parallel Numerical Algorithms

Outline

0 Inner Product
e Outer Product
e Matrix-Vector Product

e Matrix-Matrix Product

Michael T. Heath Parallel Numerical Algorithms

Examples of BLAS

Level Work Examples Function

1 O(n) saxpy Scalar x vector + vector
sdot Inner product
snrm2 Euclidean vector norm

2 O(n?) sgemv Matrix-vector product
strsv Triangular solution
sger Rank-one update

3 O(®) sgemm Matrix-matrix product
strsm Multiple triang. solutions
ssyrk Rank-k update

Michael T. Heath Parallel Numerical Algorithms

Inner Product

Inner Product

@ Inner product of two n-vectors x and y given by

n
VCT?/ = Z T Yi
i=1

@ Computation of inner product requires n multiplications
and n — 1 additions

@ For simplicity, model serial time as
Ty =ten

where t. is time for one scalar multiply-add operation

Michael T. Heath Parallel Numerical Algorithms

Inner Product

Fine-Grain Parallel Algorithm

Z = ZiYi { local scalar product }

reduce z across all tasks { sum reduction }

Michael T. Heath Parallel Numerical Algorithms

Inner Product Inner Product

Parallel Algorithm Parallel Algorithm

Agglomeration and Mapping Coarse-Grain Parallel Algorithm

Agglomerate

@ Combine k components of both « and y to form each

coarse-grain task, which computes inner product of these o ﬂ?[Ti]y[fz] { local inner product }
subvectors
@ Communication becomes sum reduction over n/k reduce z across all processes { sum reduction }

coarse-grain tasks
Map

@ Assign (n/k)/p coarse-grain tasks to each of p processes,
for total of n/p components of and y per process

[:c[,;] means subvector of assigned to process i by mapping}

OO OISO OROEO 0

Michael T. Heath Parallel Numerical Algorithms Michael T. Heath Parallel Numerical Algorithms

Inner Product . A Inner Product

Parallel Algorithm
Scalabi
Optimality Optimality

Performance Scalability for 1-D Mesh

@ Time for computation phase is
@ For 1-D mesh, total time is

Tcomp =t n/p
Ty, =t n/p+ (ts +tw) (p— 1)
regardless of network
)] o) @ To determine isoefficiency function, set
@ Depending on network, time for communication phase is

o 1-D mesh: Teomm = (ts +tw) (p — 1) n
@ 2-Dmesh: Teomm = (ts +tw)2(y/p— 1) fem
o hypercube: Teomm = (ts + ty) logp

Q

E(pTp)
E (t(‘n + (ts‘ + tw)p (p - 1))

Q

which holds if n = ©(p?), so isoefficiency function is ©(p?),
@ For simplicity, ignore cost of additions in reduction, which is since Ty = O(n)
usually negligible

Michael T. Heath Parallel Numerical Algorithms Michael T. Heath Parallel Numerical Algorithms

Inner Product Inner Product

Scalability for 2-D Mesh Scalability for Hypercube

@ For 2-D mesh, total time is @ For hypercube, total time is
Ty =ten/p+ (ts +tw) 2(y/p— 1) Ty =ten/p+ (ts + tw) logp
@ To determine isoefficiency function, set @ To determine isoefficiency function, set
ten = E (ten + (ts + tw) p 2(y/p — 1)) ten = E (ten + (ts + tw) p logp)
which holds if n = ©(p3/?, so isoefficiency function is which holds if n = ©(p logp), so isoefficiency function is
O(p3/?), since Ty = O(n) O(p logp), since T = O(n)
1]

Michael T. Heath Parallel Numerical Algorithms Michael T. Heath Parallel Numerical Algorithms

Inner Product Inner Product
Parallel orithm

Oplimalit)‘/ Optimalit)‘/

Optimality for 1-D Mesh Optimality for 1-D Mesh

@ To determine optimal number of processes for given n,
take p to be continuous variable and minimize 7, with
respect to p

@ For 1-D mesh @ If n < (ts + tw)/tc, then only one process should be used
d @ Substituting optimal p into formula for 7}, shows that
7 _ P
T = dp {tc /v (s +tw) (0 1)] optimal time to compute inner product grows as /n with

—ten/p?+ (ts +ty) =0 increasing n on 1-D mesh

implies that optimal number of processes is

s+ tw 1]

Michael T. Heath Parallel Numerical Algorithms Michael T. Heath Parallel Numerical Algorithms

Inner Product

Optimality for Hypercube

@ For hypercube

d
! _ .
T, = o ten/p+ (ts +tw) logp
= —ten/p?+ (ts+tw)/p=0

implies that optimal number of processes is

" tem
P

and optimal time grows as log n with increasing n

Michael T. Heath Parallel Numerical Algorithms

Outer Product

Parallel Algorithm

Parallel Algorithm

Partition
@ Fori,j=1,...,n,fine-grain task (7, j) computes and
stores z;; = x; y;, yielding 2-D array of n? fine-grain tasks

@ Assuming no replication of data, at most 2n fine-grain
tasks store components of « and y, say either
o for some j, task (i, j) stores x; and task (j,) stores y;, or
o task (i,7) storesboth z; and y;,i =1,...,n

Communicate

@ Fori=1,...,n,task that stores z; broadcasts it to all other
tasks in ith task row

@ Forj=1,...,n, task that stores y; broadcasts it to all
other tasks in jth task column

Michael T. Heath Parallel Numerical Algorithms

Outer Product ??aralle\ Algorith

Fine-Grain Parallel Algorithm

broadcast x; to tasks (i, k), k=1,...,n { horizontal broadcast }

broadcast y; to tasks (k,j), k=1,...,n {vertical broadcast }

2ij = T4y { local scalar product }

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

2-D Agglomeration

@ Each task that stores portion of = must broadcast its
subvector to all other tasks in its task row

@ Each task that stores portion of y must broadcast its
subvector to all other tasks in its task column

Michael T. Heath Parallel Numerical Algorithms

Outer Product

Quter Product

@ Outer product of two n-vectors « and y is n x n matrix
Z = zy” whose (i, j) entry z; = z;y;

@ For example,
T
T Y1 r1yyr T1Yy2 T1Y3

T2 Y2 = |T2Y1 T2Y2 T2Y3
r3 Ys T3Yr T3Y2 T3Y3

@ Computation of outer product requires n? multiplications,
so model serial time as

where t. is time for one scalar multiplication

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
eration Schemes
ity

Fine-Grain Tasks and Communication

Outer Product

Michael T. Heath Parallel Numerical Algorithms

Outer Product

Agglomeration

Agglomerate

With n x n array of fine-grain tasks, natural strategies are

@ 2-D: Combine k x k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)? coarse-grain tasks

@ 1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

@ 1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithrr
Agglomeration Schemes
Scalability

Outer Product

2-D Agglomeration

X XY, X3 X34 X3)s XV

@@ @
> el
alrloliole
! fQ 1

X X2 Xabs Xo¥s XaYs XaVs

>

19101910

OO0
&)

Xsh X3

X1 Xe¥s

LS
=

101010
OHLOHLOE

OO0
:

Michael T. Heath Parallel Numerical Algorithms

1]

1]

1]

orithm
tion Schemes

Outer Product o Outer Product

1-D Agglomeration 1-D Column Agglomeration

X1V

XV

@ If either x or y stored in one task, then broadcast required
to communicate needed values to all other tasks

X3Vs

@ If either = or y distributed across tasks, then multinode
broadcast required to communicate needed values to other
tasks

R

XV

OIOIOIOION0

Xl

1]

Michael T. Heath Parallel Numerical Algorithms

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product Outer Product

1-D Row Agglomeration

SISISISIOIS
) @) @) () () () m

T @ 2-D: Assign (n/k)?/p coarse-grain tasks to each of p
@ @ @ @ @ @ processes using any desired mapping in each dimension,
; treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

o) @) () @)) : i

Michael T. Heath Parallel Numerical Algorithms Michael T. Heath Parallel Numerical Algorithms

Mapping

© o e 6 eleloialore
> el
© @@ @ 6 © 6 e R e
] t
S|SIB|01® ®
Jo b e @ 6 @l @

X3

H
i

X

Vs

Xsh X3

E®E

DO ®
6161616
.
®
@

X1 Xels
N

.) @)) @)) o) .

Michael T. Heath Parallel Numerical Algorithms 29/81 Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product Outer Product

1-D Row Agglomeration with Block Mapping Coarse-Grain Parallel Algorithm

() () (o) () () (o)
X1Vs
PO E
&) @) &) &) &)
X, XY
@O ®E
o) @)) () () o)
() () () () () ()
Q [Z[i]m means submatrix of Z assigned to process (i, j) by
Xe¥s)
1] mapping | 1]

broadcast z;; to ith process row { horizontal broadcast }

broadcast y; ; to jth process column { vertical broadcast }

Zi) = m[i]y[Tj] { local outer product }

Michael T. Heath Parallel Numerical Algorithms Michael T. Heath Parallel Numerical Algorithms

Outer Product

Scalability

@ Time for computation phase is
Tcomp = tc n2/p
regardless of network or agglomeration scheme

@ For 2-D agglomeration on 2-D mesh, communication time
is at least

Teomm = (ts + tw n/\/ﬁ) (\/17) - 1)

assuming broadcasts can be overlapped

Michael T. Heath Parallel Numerical Algorithms

Outer Product
Scalability

Scalability for Hypercube

@ Total time for hypercube is at least

T, tC7z2/p+(t5+tu,.7z/\/p7)(logp)/2

ten®/p+ts (logp)/2 + twn (logp)/(2y/P)

@ To determine isoefficiency function, set

ten? x E (ten® +tsp (logp)/2 + twn+/p(logp)/2)

which holds for large p if n = ©(,/p logp), so isoefficiency
function is ©(p (log p)?), since T1 = O(n?)

Michael T. Heath Parallel Numerical Algorithms

Outer Product

Scalability for 1-D Mesh

@ For 1-D mesh, total time is at least

T, = t. n2/p+ (ts +tyn/p) (p—1)
tan/p+tSp+ tun

Q

@ To determine isoefficiency function, set
ten? = E (ten® + typ? 4+ tynp)

which holds if n = ©(p), so isoefficiency function is ©(p?),
since Ty = O(n?)

Michael T. Heath Parallel Numerical Algorithms

Matrix-Vector Product

Matrix-Vector Product

@ Consider matrix-vector product
y=Ax
where A is n x n matrix and « and y are n-vectors

@ Components of vector y are given by

n

Yi = § ajjxj, i=1,...,n
Jj=1

@ Each of n components requires n multiply-add operations,
so model serial time as

T =t n?

Michael T. Heath Parallel Numerical Algorithms

Outer Product

Scalability for 2-D Mesh

@ Total time for 2-D mesh is at least

t(tnz/p+ (ts J"tw n/\/i)) (\/ﬁf 1)
ten?/p+ts/p+twn

Tp

Q

@ To determine isoefficiency function, set
ten?~E (te n? + t3p3/2 +tynp)

which holds for large p if n = ©(p), so isoefficiency function
is ©(p?), since Ty = O(n?)

Michael T. Heath Parallel Numerical Algorithms

Outer Product parallel HH”‘!,

Scalability

Scalability for 1-D mesh

@ Depending on network, time for communication phase with
1-D agglomeration is at least

o 1-D mesh: Tromm = (ts + twn/p) (p — 1)
o 2-D mesh: Tiomm = (ts + twn/p) 2(yp — 1)
o hypercube: Teomm = (ts + t n/p) logp

assuming broadcasts can be overlapped

Michael T. Heath Parallel Numerical Algorithms

Outer Product

Memory Requirements

@ With either 1-D or 2-D algorithm, straightforward
broadcasting of « or y could require as much total memory
as replication of entire vector in all processes

@ Memory requirements can be reduced by circulating
portions of & or y through processes in ring fashion, with
each process using each portion as it passes through, so
that no process need store entire vector at once

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm

Matrix-Vector Product allon Schemes

Parallel Algorithm

Partition

@ Fori,j=1,...,n, fine-grain task (i, j) stores a;; and
computes a;; z;, yielding 2-D array of n? fine-grain tasks

@ Assuming no replication of data, at most 2n fine-grain
tasks store components of « and y, say either
o for some j, task (j,i) stores z; and task (i, j) stores y;, or
o task (i,7) stores both z; and y;,i =1,...,n
Communicate

@ Forj=1,...,n, task that stores z; broadcasts it to all
other tasks in jth task column

@ Fori=1,...,n, sum reduction over ith task row gives y;

Michael T. Heath Parallel Numerical Algorithms

1]

1]

1]

Matrix-Vector Product

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Seala
Scalability

Agglomeration

Agglomerate

With n. x n array of fine-grain tasks, natural strategies are

@ 2-D: Combine k x k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)? coarse-grain tasks

@ 1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

@ 1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product

2-D Agglomeration

Matrix-Vector Product

Fine-Grain Parallel Algorithm

broadcast z; to tasks (k,j), k=1,...,n { vertical broadcast }
Yi = Q5 Tj { local scalar product }

reduce y; across tasks (i, k), k=1,...,n {horizontal sum reduction }

1]

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product Seala
Scalability

2-D Agglomeration

@ Subvector of « broadcast along each task column

@ Each task computes local matrix-vector product of
submatrix of A with subvector of

@ Sum reduction along each task row produces subvector of
result y

1]

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm

Matrix-Vector Product fgg"’mf’?“"" SECIED

el
N
a.
!

yy

@Xy @sXs 41X

DXy sXs

26X

-

G ® 6

3% A%y 3% B36%

@y A% 4%y @4sXs 46X

dedbe
PP

-

5%y A3 AsXy 56X

Xy Xy

PP
alojolo
DO I ®
D @

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product

1-D Column Agglomeration

% @ 16
820
ge e
-
slelE
RN,

) (=) (o
5% 3
N/
agx, Q o
6% 5% Ve

Michael T. Heath Parallel Numerical Algorithms

45/81

47781

1-D Agglomeration
1-D column agglomeration

@ Each task computes product of its component of x times
its column of matrix, with no communication required

@ Sum reduction across tasks then produces y

1-D row agglomeration

@ If x stored in one task, then broadcast required to
communicate needed values to all other tasks

o If distributed across tasks, then multinode broadcast
required to communicate needed values to other tasks

@ Each task computes inner product of its row of A with
entire vector x to produce its component of y 1]

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm

Matrix-Vector Product | Adglomeration Schemes

1-D Row Agglomeration

GICISICION®
Plcloiolone
SICIGICIoIS

Qacky
Js

Aar*y L0 B3 A4s¥s 4%

A5y a7 L s B AsXs

Js
H
PICICICIoNS ;

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product S
Scalability

Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product S
Scalability

1-D Agglomeration

Column and row algorithms are dual to each other

@ Column algorithm begins with communication-free local
saxpy computations followed by sum reduction

@ Row algorithm begins with broadcast followed by
communication-free local sdot computations

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes

Matrix-Vector Product q
Scalability

Mapping

Map

@ 2-D: Assign (n/k)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

1]

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorith

Matrix-Vector Product Qpala
Scalability

2-D Agglomeration with Block Mapping

a,.x,
|
a.
= @0 @ @ @
3
! f t
G50 (g, | [aw @
Vs
2 @)
t
J
.

3% A%y

Ay

A%

5%y

OO E
OIGIOKO
OIOIOND
G €D
AT]ONO

¥y

Michael T. Heath

Matrix-Vector Product

PEOOOE .

Michael T. Heath

Matrix-Vector Product

1-D Column Agglomeration with Block Mapping

a.,tx g, % "f‘ E

Michael T. Heath Parallel Numerical Algorithms

Matrix-Vector Product

Coarse-Grain Parallel Algorithm

broadcast x| to jth process column { vertical broadcast }
Y] = Au 1T { local matrix-vector product }

reduce y;) across ith process row { horizontal sum reduction }

1]

Michael T. Heath Parallel Numerical Algorithms

Parallel orithrr

Matrix-Vector Product Scalability

Scalability

@ Time for computation phase is
Tcomp =t n2/p
regardless of network or agglomeration scheme

@ For 2-D agglomeration on 2-D mesh, each of two
communication phases requires time

(t5+tw7l/\/]7?)(\/ﬁ*1)%t,;\/f)+twn

so total time is

T, ~ ten?/p+2(ts /D +twn)

Michael T. Heath Parallel Numerical Algorithms

Scalability for 2-D Mesh

@ To determine isoefficiency function, set
ten® = E (ten® + 2(ts p*? + twnp))

which holds if n = ©(p), so isoefficiency function is ©(p?),
since Ty = ©(n?)

1]

Michael T. Heath Parallel Numerical Algorithms

Matrix-Vector Product

Scalability for Hypercube

@ Total time for hypercube is

T te nZ/er (ts +twn/\/p) logp

ten?/p+ts logp + twn (logp)/\/p

@ To determine isoefficiency function, set
ten? = E (ten® +tsp logp +tyn /D logp)

which holds for large p if n = ©(,/p logp), so isoefficiency
function is ©(p (log p)?), since T1 = O(n?)

Michael T. Heath Parallel Numerical Algorithms

Matrix-Vector Product

Scalability for 1-D Mesh

@ To determine isoefficiency function, set
ten? = E (ten® 4+t p* 4 tynp)

which holds if n = ©(p), so isoefficiency function is ©(p?),
since Ty = ©(n?)

Michael T. Heath Parallel Numerical Algorithms

Matrix-Matrix Product

Matrix-Matrix Product

@ Matrix-matrix product can be viewed as
e n?inner products, or
e sum of n outer products, or
e n matrix-vector products

and each viewpoint yields different algorithm
@ One way to derive parallel algorithms for matrix-matrix

product is to apply parallel algorithms already developed
for inner product, outer product, or matrix-vector product

@ We will develop parallel algorithms for this problem directly,
however

Michael T. Heath Parallel Numerical Algorithms

Matrix-Matrix Product

Parallel Algorithm

Communicate

@ Broadcast entries of jth column of A horizontally along
each task row in jth layer

@ Broadcast entries of ith row of B vertically along each task
column in ith layer

@ Fori,j =1,...,n,result ¢;; is given by sum reduction over
tasks (i,7,k), k=1,...,n

Michael T. Heath Parallel Numerical Algorithms

Matrix-Vector Product

Scalability for 1-D Mesh

@ Depending on network, time for communication phase with
1-D agglomeration is at least

o 1-D mesh: Teomm = (ts + twn/p) (p— 1)
o 2-D mesh: Teomm = (ts + twn/p) 2(y/p — 1)
o hypercube: Tiomm = (ts + twn/p) logp

@ For 1-D agglomeration on 1-D mesh, total time is at least

T, = ten®/p+(ts+twn/p) (p—1)
ten?/p+top+tun

Q

Michael T. Heath Parallel Numerical Algorithms

Parallel orithm

Matrix-Matrix Product

Matrix-Matrix Product

@ Consider matrix-matrix product
C=AB
where A, B, and result C are n x n matrices

@ Entries of matrix C are given by
n
Cij = Zaikbkjs L,j=1,...,n
k=1

@ Each of n? entries of C requires n multiply-add operations,
so model serial time as

Michael T. Heath Parallel Numerical Algorithms

Matrix-Matrix Product

Parallel Algorithm

Partition

@ Fori,j,k=1,...,n, fine-grain task k
(i, 4, k) computes product a; by, yielding
3-D array of n? fine-grain tasks i
@ Assuming no replication of data, at most =
3n? fine-grain tasks store entries of A, B, J
or C, say task (i, j, j) stores a;;, task
(4, 7,1) stores b;;, and task (4, j, k) stores
¢ijfori,j =1,...,n and some fixed k

@ We refer to subsets of tasks along 4, j, and k& dimensions
as rows, columns, and layers, respectively, so kth column
of A and kth row of B are stored in kth layer of tasks

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm

ation Schemes

Matrix-Matrix Product

Fine-Grain Algorithm

broadcast a;, to tasks (i,q,k), ¢ =1,...,n { horizontal broadcast }
broadcast by to tasks (¢,j,k), ¢=1,...,n { vertical broadcast }
Cij = Qikbk; { local scalar product }

reduce c;; across tasks (4,5,¢), ¢=1,...,n {lateral sum reduction }

Michael T. Heath Parallel Numerical Algorithms

1]

1]

1]

Matrix-Matrix Product

Agglomeration

orithm
tion Schemes

Matrix-Matrix Product

Mapping

Agglomerate
With n x n x n array of fine-grain tasks, natural strategies are

@ 3-D: Combine ¢ x ¢ x g subarray of fine-grain tasks

@ 2-D: Combine ¢ x ¢ x n subarray of fine-grain tasks,
eliminating sum reductions

@ 1-D column: Combine n x 1 x n subarray of fine-grain
tasks, eliminating vertical broadcasts and sum reductions

@ 1-D row: Combine 1 x n x n subarray of fine-grain tasks,
eliminating horizontal broadcasts and sum reductions

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes

Matrix-Matrix Prouct | 2ol

Agglomeration with Block Mapping

1-D row 1-D col 2-D 3-D

Michael T. Heath Parallel Numerical Algorithms

Matrix-Matrix Product

Agglomeration with Block Mapping

—
Ay Byt ApByy | [Ay Bt A, B,

1-D column:
Ay Byt Azz&| A Bt AnBy
‘Au Au‘ ‘Bu BIZ‘ ‘ Au?u*“‘u%n AIlBiIZ+AIZB;lz ‘
1-D row: = i T + T
lAll Azzl an Bzzl lAle11+Azszl Ay Bt AnBy l
Michael T. Heath Parallel Numerical Algorithms 69 /81

Parallel Algorithm
Agglomeration Schemes

Matrix-Matrix Prouct | 2ol

Fox Algorithm

@ Algorithm just described requires excessive memory, since
each process accumulates /p blocks of both A and B

@ One way to reduce memory requirements is to

e broadcast blocks of A successively across process rows,
and
e circulate blocks of B in ring fashion vertically along process
columns
step by step so that each block of B comes in conjunction
with appropriate block of A broadcast at that same step

@ This algorithm is due to Fox et al.

Map
Corresponding mapping strategies are
@ 3-D: Assign (n/q)?/p coarse-grain tasks to each of p

processes using any desired mapping in each dimension,
treating target network as 3-D mesh

@ 2-D: Assign (n/q)?/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

@ 1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D

mesh E

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes

Matrix-Matrix Prouct | 2ol

Coarse-Grain 3-D Parallel Algorithm

broadcast Ay;) to ith process row { horizontal broadcast }
broadcast By, to jth process column { vertical broadcast }
C[,;][]-] = A[i][k]B[k][j] { local matrix product }

reduce Cf;)[,] across process layers { lateral sum reduction }

Michael T. Heath Parallel Numerical Algorithms

Matrix-Matrix Product goly

Coarse-Grain 2-D Parallel Algorithm

all-to-all bcast Ay;j;; in ith process row { horizontal broadcast }
all-to-all beast By;yj;; in jth process column { vertical broadcast }
Cljj) =0

fork=1,...,p
Ciitr1 = Cits) + Al Bris)
end

{ sum local products }

1]

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Cannon Algorithm

@ Another approach, due to Cannon, is to circulate blocks of
B vertically and blocks of A horizontally in ring fashion

@ Blocks of both matrices must be initially aligned using
circular shifts so that correct blocks meet as needed

@ Requires even less memory than Fox algorithm, but trickier
to program because of shifts required

@ Performance and scalability of Fox and Cannon algorithms
are not significantly different from that of previous 2-D
algorithm, but memory requirements are much less

Michael T. Heath Parallel Numerical Algorithms

Michael T. Heath Parallel Numerical Algorithms

Parallel Algorithm

A
Scalability

Matrix-Matrix Product

Scalability for 3-D Agglomeration

@ For 3-D agglomeration, computing each of p blocks Cj;y ;5
requires matrix-matrix product of two (n/¢/p) x (n/¥/p)
blocks, so

Tcomp =t (,n//\:i/ﬁ):; =1 n3/p
@ On 3-D mesh, each broadcast or reduction takes time
(ts + tw (n/\d/ﬁ)z) (p—1)~ts p]/:S + tw 712/1)1/3
@ Total time is therefore

T, =tn/p+ 3ty p'/3 + 3ty nz/pl/?’

Michael T. Heath Parallel Numerical Algorithms

Scalability

Matrix-Matrix Product

Scalability for 2-D Agglomeration

@ For 2-D agglomeration, computation of each block Cj;j;;

requires ,/p matrix-matrix products of (n/\/p) x (n/\/p)
blocks, so

Teomp = ter/D (n/\/ﬁ)3 =t.n/p
@ For 2-D mesh, communication time for broadcasts along
rows and columns is
Tcomm = (ts + tw nQ/p)(\/ﬁ - 1)
tor/D + tw TLQ/\/ﬁ

assuming horizontal and vertical broadcasts can overlap
(multiply by two otherwise)

Q

Michael T. Heath Parallel Numerical Algorithms

arallel Algorithm

Scalability

Matrix-Matrix Product

Scalability for 1-D Agglomeration

@ For 1-D agglomeration on 1-D mesh, total time is

T, = t. n3/p+ (ts +twn?/p) (p—1)
t¢n3/p+tsp+ t 12

Q

@ To determine isoefficiency function, set
ten® = E (ten® + typ? 4+ tyn?p)

which holds for large p if n = ©(p), so isoefficiency function
is ©(p®) since T} = O(n?)

Michael T. Heath Parallel Numerical Algorithms

orithm

Scalability

Matrix-Matrix Product

References

@ R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and
P. Palkar, A three-dimensional approach to parallel matrix
multiplication, IBM J. Res. Dev., 39:575-582, 1995

@ J. Berntsen, Communication efficient matrix multiplication
on hypercubes, Parallel Comput. 12:335-342, 1989

@ J. Demmel, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, Communication-optimal parallel recursive
rectangular matrix multiplication, IPDPS, 2013

@ J. W. Demmel, M. T. Heath, and H. A. van der Vorst,
Parallel numerical linear algebra, Acta Numerica
2:111-197, 1993

Michael T. Heath Parallel Numerical Algorithms

Scalability

Matrix-Matrix Product

Scalability for 3-D Agglomeration

@ To determine isoefficiency function, set
ten® & B (ten® + 3, p*3 + 3ty n*p?'%)

which holds for large p if n = ©(p*/?), so isoefficiency
function is ©(p?), since 71 = ©(n?)

@ For hypercube, total time becomes
T, = ten®/p + ts logp + tw n?(log p) /p*/>

which leads to isoefficiency function of ©(p (log p)?)

Michael T. Heath Parallel Numerical Algorithms

Ag
Matrix-Matrix Product | Scaiabilly

Scalability for 2-D Agglomeration

@ Total time for 2-D mesh is
T~ ten®/p+tsy/D+ twn?//D
@ To determine isoefficiency function, set
ten® & E (ten® 4+t p*? + tyn®yp)

which holds for large p if » = ©(,/p), so isoefficiency
function is ©(p*/?), since T, = O(n?)

Michael T. Heath Parallel Numerical Algorithms

Scalability

Matrix-Matrix Product

Communication vs. Memory Tradeoff

@ Communication volume for 2-D algorithms for matrix-matrix
product is optimal, assuming no replication of storage

@ If explicit replication of storage is allowed, then lower
communication volume is possible

@ Block-recursive 3-D algorithm can reduce communication
volume by factor of p~1/¢ while increasing memory usage
by factor of p!/3

@ Recently, “2.5-D” algorithms have been developed that
interpolate between 2-D and 3-D algorithms, using partial
storage replication to reduce communication volume to
whatever extent available memory allows

Michael T. Heath Parallel Numerical Algorithms

gorithrr

Matrix-Matrix Product | Scaiabilty

References

@ R. Dias da Cunha, A benchmark study based on the
parallel computation of the vector outer-product A = uv™
operation, Concurrency: Practice and Experience
9:803-819, 1997

@ G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix algorithms
on a hypercube |: matrix multiplication, Parallel Comput.
4:17-31, 1987

@ D. Irony, S. Toledo, and A. Tiskin, Communication lower
bounds for distributed-memory matrix multiplication, J.
Parallel Distrib. Comput. 64:1017-1026, 2004.

@ S. L. Johnsson, Communication efficient basic linear
algebra computations on hypercube architectures, J.
Parallel Distrib. Comput. 4(2):133-172, 1987

Michael T. Heath Parallel Numerical Algorithms

1]

1]

1]

orithm

Matrix-Matrix Product | Scaiabilty

References

@ S. L. Johnsson, Minimizing the communication time for
matrix multiplication on multiprocessors, Parallel Comput.
19:1235-1257, 1993

@ B. Lipshitz, Communication-avoiding parallel recursive
algorithms for matrix multiplication, Tech. Rept.
UCB/EECS-2013-100, University of California at Berkeley,
May 2013.

@ O. McBryan and E. F. Van de Velde, Matrix and vector
operations on hypercube parallel processors, Paralle!
Comput. 5:117-126, 1987

@ R. A. Van De Geijn and J. Watts, SUMMA: Scalable
universal matrix multiplication algorithm, Concurrency: 1
Practice and Experience 9(4):255-274, 1997 1]

Michael T. Heath Parallel Numerical Algorithms

	Inner Product
	
	
	

	Outer Product
	
	
	

	Matrix-Vector Product
	
	
	

	Matrix-Matrix Product
	
	
	

