
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Numerical Algorithms
Chapter 5 – Vector and Matrix Products

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath Parallel Numerical Algorithms 1 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Outline

1 Inner Product

2 Outer Product

3 Matrix-Vector Product

4 Matrix-Matrix Product

Michael T. Heath Parallel Numerical Algorithms 2 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms (BLAS) are building
blocks for many other matrix computations

BLAS encapsulate basic operations on vectors and
matrices so they can be optimized for particular computer
architecture while high-level routines that call them remain
portable

BLAS offer good opportunities for optimizing utilization of
memory hierarchy

Generic BLAS are available from netlib, and many
computer vendors provide custom versions optimized for
their particular systems

Michael T. Heath Parallel Numerical Algorithms 3 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Examples of BLAS

Level Work Examples Function
1 O(n) saxpy Scalar × vector + vector

sdot Inner product
snrm2 Euclidean vector norm

2 O(n2) sgemv Matrix-vector product
strsv Triangular solution
sger Rank-one update

3 O(n3) sgemm Matrix-matrix product
strsm Multiple triang. solutions
ssyrk Rank-k update

Michael T. Heath Parallel Numerical Algorithms 4 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Simplifying Assumptions

For problem of dimension n using p processes, assume p
(or in some cases

√
p) divides n

For 2-D mesh, assume p is perfect square and mesh is√
p×√p

For hypercube, assume p is power of two

Assume matrices are square, n× n, not rectangular

Dealing with general cases where these assumptions do
not hold is straightforward but tedious, and complicates
notation

Caveat: your mileage may vary, depending on
assumptions about target system, such as level of
concurrency in communication

Michael T. Heath Parallel Numerical Algorithms 5 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Inner Product

Inner product of two n-vectors x and y given by

xTy =

n∑
i=1

xi yi

Computation of inner product requires n multiplications
and n− 1 additions

For simplicity, model serial time as

T1 = tc n

where tc is time for one scalar multiply-add operation

Michael T. Heath Parallel Numerical Algorithms 6 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Parallel Algorithm

Partition

For i = 1, . . . , n, fine-grain task i stores xi and yi, and
computes their product xi yi

Communicate

Sum reduction over n fine-grain tasks

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9

Michael T. Heath Parallel Numerical Algorithms 7 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Fine-Grain Parallel Algorithm

z = xiyi

reduce z across all tasks

{ local scalar product }

{ sum reduction }

Michael T. Heath Parallel Numerical Algorithms 8 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Agglomeration and Mapping

Agglomerate

Combine k components of both x and y to form each
coarse-grain task, which computes inner product of these
subvectors

Communication becomes sum reduction over n/k
coarse-grain tasks

Map

Assign (n/k)/p coarse-grain tasks to each of p processes,
for total of n/p components of x and y per process

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9++ ++ + +

Michael T. Heath Parallel Numerical Algorithms 9 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Coarse-Grain Parallel Algorithm

z = xT
[i]y[i]

reduce z across all processes

{ local inner product }

{ sum reduction }

[
x[i] means subvector of x assigned to process i by mapping

]

Michael T. Heath Parallel Numerical Algorithms 10 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Performance

Time for computation phase is

Tcomp = tc n/p

regardless of network

Depending on network, time for communication phase is

1-D mesh: Tcomm = (ts + tw) (p− 1)

2-D mesh: Tcomm = (ts + tw) 2(
√
p− 1)

hypercube: Tcomm = (ts + tw) log p

For simplicity, ignore cost of additions in reduction, which is
usually negligible

Michael T. Heath Parallel Numerical Algorithms 11 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Scalability for 1-D Mesh

For 1-D mesh, total time is

Tp = tc n/p + (ts + tw) (p− 1)

To determine isoefficiency function, set

T1 ≈ E (p Tp)

tc n ≈ E (tc n + (ts + tw) p (p− 1))

which holds if n = Θ(p2), so isoefficiency function is Θ(p2),
since T1 = Θ(n)

Michael T. Heath Parallel Numerical Algorithms 12 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Scalability for 2-D Mesh

For 2-D mesh, total time is

Tp = tc n/p + (ts + tw) 2(
√
p− 1)

To determine isoefficiency function, set

tc n ≈ E (tc n + (ts + tw) p 2(
√
p− 1))

which holds if n = Θ(p3/2), so isoefficiency function is
Θ(p3/2), since T1 = Θ(n)

Michael T. Heath Parallel Numerical Algorithms 13 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Scalability for Hypercube

For hypercube, total time is

Tp = tc n/p + (ts + tw) log p

To determine isoefficiency function, set

tc n ≈ E (tc n + (ts + tw) p log p)

which holds if n = Θ(p log p), so isoefficiency function is
Θ(p log p), since T1 = Θ(n)

Michael T. Heath Parallel Numerical Algorithms 14 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Optimality for 1-D Mesh

To determine optimal number of processes for given n,
take p to be continuous variable and minimize Tp with
respect to p

For 1-D mesh

T ′p =
d

dp

[
tc n/p + (ts + tw) (p− 1)

]
= −tc n/p2 + (ts + tw) = 0

implies that optimal number of processes is

p ≈
√

tc n

ts + tw

Michael T. Heath Parallel Numerical Algorithms 15 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Optimality for 1-D Mesh

If n < (ts + tw)/tc , then only one process should be used

Substituting optimal p into formula for Tp shows that
optimal time to compute inner product grows as

√
n with

increasing n on 1-D mesh

Michael T. Heath Parallel Numerical Algorithms 16 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability
Optimality

Optimality for Hypercube

For hypercube

T ′p =
d

dp

[
tc n/p + (ts + tw) log p

]
= −tc n/p2 + (ts + tw)/p = 0

implies that optimal number of processes is

p ≈ tc n

ts + tw

and optimal time grows as log n with increasing n

Michael T. Heath Parallel Numerical Algorithms 17 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Outer product of two n-vectors x and y is n× n matrix
Z = xyT whose (i, j) entry zij = xi yj

For example,x1x2
x3

y1y2
y3

T

=

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3
x3y1 x3y2 x3y3


Computation of outer product requires n2 multiplications,
so model serial time as

T1 = tc n
2

where tc is time for one scalar multiplication

Michael T. Heath Parallel Numerical Algorithms 18 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) computes and
stores zij = xi yj , yielding 2-D array of n2 fine-grain tasks

Assuming no replication of data, at most 2n fine-grain
tasks store components of x and y, say either

for some j, task (i, j) stores xi and task (j, i) stores yi, or
task (i, i) stores both xi and yi, i = 1, . . . , n

Communicate

For i = 1, . . . , n, task that stores xi broadcasts it to all other
tasks in ith task row

For j = 1, . . . , n, task that stores yj broadcasts it to all
other tasks in jth task column

Michael T. Heath Parallel Numerical Algorithms 19 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Tasks and Communication

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath Parallel Numerical Algorithms 20 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Parallel Algorithm

broadcast xi to tasks (i, k), k = 1, . . . , n

broadcast yj to tasks (k, j), k = 1, . . . , n

zij = xiyj

{ horizontal broadcast }

{ vertical broadcast }

{ local scalar product }

Michael T. Heath Parallel Numerical Algorithms 21 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: Combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath Parallel Numerical Algorithms 22 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration

Each task that stores portion of x must broadcast its
subvector to all other tasks in its task row

Each task that stores portion of y must broadcast its
subvector to all other tasks in its task column

Michael T. Heath Parallel Numerical Algorithms 23 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath Parallel Numerical Algorithms 24 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Agglomeration

If either x or y stored in one task, then broadcast required
to communicate needed values to all other tasks

If either x or y distributed across tasks, then multinode
broadcast required to communicate needed values to other
tasks

Michael T. Heath Parallel Numerical Algorithms 25 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Column Agglomeration

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath Parallel Numerical Algorithms 26 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Row Agglomeration

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath Parallel Numerical Algorithms 27 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Mapping

Map

2-D: Assign (n/k)2/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

Michael T. Heath Parallel Numerical Algorithms 28 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration with Block Mapping

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath Parallel Numerical Algorithms 29 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Column Agglomeration with Block Mapping

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath Parallel Numerical Algorithms 30 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Row Agglomeration with Block Mapping

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath Parallel Numerical Algorithms 31 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Coarse-Grain Parallel Algorithm

broadcast x[i] to ith process row

broadcast y[j] to jth process column

Z[i][j] = x[i]y
T
[j]

{ horizontal broadcast }

{ vertical broadcast }

{ local outer product }

[
Z[i][j] means submatrix of Z assigned to process (i, j) by

mapping
]

Michael T. Heath Parallel Numerical Algorithms 32 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability

Time for computation phase is

Tcomp = tc n
2/p

regardless of network or agglomeration scheme

For 2-D agglomeration on 2-D mesh, communication time
is at least

Tcomm = (ts + tw n/
√
p) (
√
p− 1)

assuming broadcasts can be overlapped

Michael T. Heath Parallel Numerical Algorithms 33 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 2-D Mesh

Total time for 2-D mesh is at least

Tp = tc n
2/p + (ts + tw n/

√
p) (
√
p− 1)

≈ tc n
2/p + ts

√
p + tw n

To determine isoefficiency function, set

tc n
2 ≈ E (tc n

2 + ts p
3/2 + tw n p)

which holds for large p if n = Θ(p), so isoefficiency function
is Θ(p2), since T1 = Θ(n2)

Michael T. Heath Parallel Numerical Algorithms 34 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for Hypercube

Total time for hypercube is at least

Tp = tc n
2/p + (ts + tw n/

√
p) (log p)/2

= tc n
2/p + ts (log p)/2 + tw n (log p)/(2

√
p)

To determine isoefficiency function, set

tc n
2 ≈ E (tc n

2 + ts p (log p)/2 + tw n
√
p (log p)/2)

which holds for large p if n = Θ(
√
p log p), so isoefficiency

function is Θ(p (log p)2), since T1 = Θ(n2)

Michael T. Heath Parallel Numerical Algorithms 35 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 1-D mesh

Depending on network, time for communication phase with
1-D agglomeration is at least

1-D mesh: Tcomm = (ts + tw n/p) (p− 1)

2-D mesh: Tcomm = (ts + tw n/p) 2(
√
p− 1)

hypercube: Tcomm = (ts + tw n/p) log p

assuming broadcasts can be overlapped

Michael T. Heath Parallel Numerical Algorithms 36 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 1-D Mesh

For 1-D mesh, total time is at least

Tp = tc n
2/p + (ts + tw n/p) (p− 1)

≈ tc n
2/p + ts p + tw n

To determine isoefficiency function, set

tc n
2 ≈ E (tc n

2 + ts p
2 + tw n p)

which holds if n = Θ(p), so isoefficiency function is Θ(p2),
since T1 = Θ(n2)

Michael T. Heath Parallel Numerical Algorithms 37 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Memory Requirements

With either 1-D or 2-D algorithm, straightforward
broadcasting of x or y could require as much total memory
as replication of entire vector in all processes

Memory requirements can be reduced by circulating
portions of x or y through processes in ring fashion, with
each process using each portion as it passes through, so
that no process need store entire vector at once

Michael T. Heath Parallel Numerical Algorithms 38 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Vector Product

Consider matrix-vector product

y = Ax

where A is n× n matrix and x and y are n-vectors

Components of vector y are given by

yi =
n∑

j=1

aij xj , i = 1, . . . , n

Each of n components requires n multiply-add operations,
so model serial time as

T1 = tc n
2

Michael T. Heath Parallel Numerical Algorithms 39 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) stores aij and
computes aij xj , yielding 2-D array of n2 fine-grain tasks

Assuming no replication of data, at most 2n fine-grain
tasks store components of x and y, say either

for some j, task (j, i) stores xi and task (i, j) stores yi, or
task (i, i) stores both xi and yi, i = 1, . . . , n

Communicate

For j = 1, . . . , n, task that stores xj broadcasts it to all
other tasks in jth task column

For i = 1, . . . , n, sum reduction over ith task row gives yi

Michael T. Heath Parallel Numerical Algorithms 40 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Tasks and Communication

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath Parallel Numerical Algorithms 41 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Parallel Algorithm

broadcast xj to tasks (k, j), k = 1, . . . , n

yi = aijxj

reduce yi across tasks (i, k), k = 1, . . . , n

{ vertical broadcast }

{ local scalar product }

{ horizontal sum reduction }

Michael T. Heath Parallel Numerical Algorithms 42 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: Combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath Parallel Numerical Algorithms 43 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration

Subvector of x broadcast along each task column

Each task computes local matrix-vector product of
submatrix of A with subvector of x

Sum reduction along each task row produces subvector of
result y

Michael T. Heath Parallel Numerical Algorithms 44 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration

a13x3
a11x1
y1

a12x2

a21x1
a22x2
y2

a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath Parallel Numerical Algorithms 45 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Agglomeration

1-D column agglomeration

Each task computes product of its component of x times
its column of matrix, with no communication required

Sum reduction across tasks then produces y

1-D row agglomeration

If x stored in one task, then broadcast required to
communicate needed values to all other tasks

If x distributed across tasks, then multinode broadcast
required to communicate needed values to other tasks

Each task computes inner product of its row of A with
entire vector x to produce its component of y

Michael T. Heath Parallel Numerical Algorithms 46 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Column Agglomeration

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath Parallel Numerical Algorithms 47 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Row Agglomeration

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath Parallel Numerical Algorithms 48 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Agglomeration

Column and row algorithms are dual to each other

Column algorithm begins with communication-free local
saxpy computations followed by sum reduction
Row algorithm begins with broadcast followed by
communication-free local sdot computations

Michael T. Heath Parallel Numerical Algorithms 49 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Mapping

Map

2-D: Assign (n/k)2/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

Michael T. Heath Parallel Numerical Algorithms 50 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration with Block Mapping

a13x3
a11x1
y1

a12x2

a21x1
a22x2
y2

a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath Parallel Numerical Algorithms 51 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Column Agglomeration with Block Mapping

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath Parallel Numerical Algorithms 52 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Row Agglomeration with Block Mapping

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath Parallel Numerical Algorithms 53 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Coarse-Grain Parallel Algorithm

broadcast x[j] to jth process column

y[i] = A[i][j]x[j]

reduce y[i] across ith process row

{ vertical broadcast }

{ local matrix-vector product }

{ horizontal sum reduction }

Michael T. Heath Parallel Numerical Algorithms 54 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability

Time for computation phase is

Tcomp = tc n
2/p

regardless of network or agglomeration scheme

For 2-D agglomeration on 2-D mesh, each of two
communication phases requires time

(ts + tw n/
√
p) (
√
p− 1) ≈ ts

√
p + tw n

so total time is

Tp ≈ tc n
2/p + 2(ts

√
p + tw n)

Michael T. Heath Parallel Numerical Algorithms 55 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 2-D Mesh

To determine isoefficiency function, set

tc n
2 ≈ E (tc n

2 + 2(ts p
3/2 + tw n p))

which holds if n = Θ(p), so isoefficiency function is Θ(p2),
since T1 = Θ(n2)

Michael T. Heath Parallel Numerical Algorithms 56 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for Hypercube

Total time for hypercube is

Tp = tc n
2/p + (ts + tw n/

√
p) log p

= tc n
2/p + ts log p + tw n (log p)/

√
p

To determine isoefficiency function, set

tc n
2 ≈ E (tc n

2 + ts p log p + tw n
√
p log p)

which holds for large p if n = Θ(
√
p log p), so isoefficiency

function is Θ(p (log p)2), since T1 = Θ(n2)

Michael T. Heath Parallel Numerical Algorithms 57 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 1-D Mesh

Depending on network, time for communication phase with
1-D agglomeration is at least

1-D mesh: Tcomm = (ts + tw n/p) (p− 1)

2-D mesh: Tcomm = (ts + tw n/p) 2(
√
p− 1)

hypercube: Tcomm = (ts + tw n/p) log p

For 1-D agglomeration on 1-D mesh, total time is at least

Tp = tc n
2/p + (ts + tw n/p) (p− 1)

≈ tc n
2/p + ts p + tw n

Michael T. Heath Parallel Numerical Algorithms 58 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 1-D Mesh

To determine isoefficiency function, set

tc n
2 ≈ E (tc n

2 + ts p
2 + tw n p)

which holds if n = Θ(p), so isoefficiency function is Θ(p2),
since T1 = Θ(n2)

Michael T. Heath Parallel Numerical Algorithms 59 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Consider matrix-matrix product

C = AB

where A, B, and result C are n× n matrices

Entries of matrix C are given by

cij =

n∑
k=1

aik bkj , i, j = 1, . . . , n

Each of n2 entries of C requires n multiply-add operations,
so model serial time as

T1 = tc n
3

Michael T. Heath Parallel Numerical Algorithms 60 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Matrix-matrix product can be viewed as

n2 inner products, or
sum of n outer products, or
n matrix-vector products

and each viewpoint yields different algorithm

One way to derive parallel algorithms for matrix-matrix
product is to apply parallel algorithms already developed
for inner product, outer product, or matrix-vector product

We will develop parallel algorithms for this problem directly,
however

Michael T. Heath Parallel Numerical Algorithms 61 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Partition

For i, j, k = 1, . . . , n, fine-grain task
(i, j, k) computes product aik bkj , yielding
3-D array of n3 fine-grain tasks
Assuming no replication of data, at most
3n2 fine-grain tasks store entries of A, B,
or C, say task (i, j, j) stores aij , task
(i, j, i) stores bij , and task (i, j, k) stores
cij for i, j = 1, . . . , n and some fixed k

i

j

k

We refer to subsets of tasks along i, j, and k dimensions
as rows, columns, and layers, respectively, so kth column
of A and kth row of B are stored in kth layer of tasks

Michael T. Heath Parallel Numerical Algorithms 62 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Communicate

Broadcast entries of jth column of A horizontally along
each task row in jth layer

Broadcast entries of ith row of B vertically along each task
column in ith layer

For i, j = 1, . . . , n, result cij is given by sum reduction over
tasks (i, j, k), k = 1, . . . , n

Michael T. Heath Parallel Numerical Algorithms 63 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Algorithm

broadcast aik to tasks (i, q, k), q = 1, . . . , n

broadcast bkj to tasks (q, j, k), q = 1, . . . , n

cij = aikbkj

reduce cij across tasks (i, j, q), q = 1, . . . , n

{ horizontal broadcast }

{ vertical broadcast }

{ local scalar product }

{ lateral sum reduction }

Michael T. Heath Parallel Numerical Algorithms 64 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration

Agglomerate

With n× n× n array of fine-grain tasks, natural strategies are

3-D: Combine q × q × q subarray of fine-grain tasks

2-D: Combine q × q × n subarray of fine-grain tasks,
eliminating sum reductions

1-D column: Combine n× 1× n subarray of fine-grain
tasks, eliminating vertical broadcasts and sum reductions

1-D row: Combine 1× n× n subarray of fine-grain tasks,
eliminating horizontal broadcasts and sum reductions

Michael T. Heath Parallel Numerical Algorithms 65 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Mapping

Map

Corresponding mapping strategies are

3-D: Assign (n/q)3/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 3-D mesh

2-D: Assign (n/q)2/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

Michael T. Heath Parallel Numerical Algorithms 66 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration with Block Mapping

1-D row 1-D col 2-D 3-D

agglomerations

1-D column1-D row 3-D2-D

Michael T. Heath Parallel Numerical Algorithms 67 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Coarse-Grain 3-D Parallel Algorithm

broadcast A[i][k] to ith process row

broadcast B[k][j] to jth process column

C[i][j] = A[i][k]B[k][j]

reduce C[i][j] across process layers

{ horizontal broadcast }

{ vertical broadcast }

{ local matrix product }

{ lateral sum reduction }

Michael T. Heath Parallel Numerical Algorithms 68 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration with Block Mapping

A21 B12 + A22 B22A21 B11 + A22 B21

A11 B12 + A12 B22

B22B21

B12B11

A22A21

A12A11 A11 B11 + A12 B21

=1-D column:

A21 B12 + A22 B22A21 B11 + A22 B21

A11 B12 + A12 B22

B22B21

B12B11

A22A21

A12A11 A11 B11 + A12 B21

=1-D row:

A21 B12 + A22 B22A21 B11 + A22 B21

A11 B12 + A12 B22

B22B21

B12B11

A22A21

A12A11 A11 B11 + A12 B21

=2-D:

Michael T. Heath Parallel Numerical Algorithms 69 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Coarse-Grain 2-D Parallel Algorithm

all-to-all bcast A[i][j] in ith process row
all-to-all bcast B[i][j] in jth process column
C[i][j] = O

for k = 1, . . . ,
√
p

C[i][j] = C[i][j] + A[i][k]B[k][j]

end

{ horizontal broadcast }
{ vertical broadcast }

{ sum local products }

Michael T. Heath Parallel Numerical Algorithms 70 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fox Algorithm

Algorithm just described requires excessive memory, since
each process accumulates

√
p blocks of both A and B

One way to reduce memory requirements is to

broadcast blocks of A successively across process rows,
and
circulate blocks of B in ring fashion vertically along process
columns

step by step so that each block of B comes in conjunction
with appropriate block of A broadcast at that same step

This algorithm is due to Fox et al.

Michael T. Heath Parallel Numerical Algorithms 71 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Cannon Algorithm

Another approach, due to Cannon, is to circulate blocks of
B vertically and blocks of A horizontally in ring fashion

Blocks of both matrices must be initially aligned using
circular shifts so that correct blocks meet as needed

Requires even less memory than Fox algorithm, but trickier
to program because of shifts required

Performance and scalability of Fox and Cannon algorithms
are not significantly different from that of previous 2-D
algorithm, but memory requirements are much less

Michael T. Heath Parallel Numerical Algorithms 72 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 3-D Agglomeration

For 3-D agglomeration, computing each of p blocks C[i][j]

requires matrix-matrix product of two (n/ 3
√
p)× (n/ 3

√
p)

blocks, so
Tcomp = tc (n/ 3

√
p)3 = tc n

3/p

On 3-D mesh, each broadcast or reduction takes time

(ts + tw (n/ 3
√
p)2) (3

√
p− 1) ≈ ts p

1/3 + tw n2/p1/3

Total time is therefore

Tp = tc n
3/p + 3ts p

1/3 + 3tw n2/p1/3

Michael T. Heath Parallel Numerical Algorithms 73 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 3-D Agglomeration

To determine isoefficiency function, set

tc n
3 ≈ E (tc n

3 + 3ts p
4/3 + 3tw n2p2/3)

which holds for large p if n = Θ(p2/3), so isoefficiency
function is Θ(p2), since T1 = Θ(n3)

For hypercube, total time becomes

Tp = tc n
3/p + ts log p + tw n2(log p)/p2/3

which leads to isoefficiency function of Θ(p (log p)3)

Michael T. Heath Parallel Numerical Algorithms 74 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 2-D Agglomeration

For 2-D agglomeration, computation of each block C[i][j]

requires
√
p matrix-matrix products of (n/

√
p)× (n/

√
p)

blocks, so

Tcomp = tc
√
p (n/

√
p)3 = tc n

3/p

For 2-D mesh, communication time for broadcasts along
rows and columns is

Tcomm = (ts + tw n2/p)(
√
p− 1)

≈ ts
√
p + tw n2/

√
p

assuming horizontal and vertical broadcasts can overlap
(multiply by two otherwise)

Michael T. Heath Parallel Numerical Algorithms 75 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 2-D Agglomeration

Total time for 2-D mesh is

Tp ≈ tc n
3/p + ts

√
p + tw n2/

√
p

To determine isoefficiency function, set

tc n
3 ≈ E (tc n

3 + ts p
3/2 + tw n2√p)

which holds for large p if n = Θ(
√
p), so isoefficiency

function is Θ(p3/2), since T1 = Θ(n3)

Michael T. Heath Parallel Numerical Algorithms 76 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 1-D Agglomeration

For 1-D agglomeration on 1-D mesh, total time is

Tp = tc n
3/p + (ts + tw n2/p) (p− 1)

≈ tc n
3/p + ts p + tw n2

To determine isoefficiency function, set

tc n
3 ≈ E (tc n

3 + ts p
2 + tw n2 p)

which holds for large p if n = Θ(p), so isoefficiency function
is Θ(p3) since T1 = Θ(n3)

Michael T. Heath Parallel Numerical Algorithms 77 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Communication vs. Memory Tradeoff

Communication volume for 2-D algorithms for matrix-matrix
product is optimal, assuming no replication of storage
If explicit replication of storage is allowed, then lower
communication volume is possible
Block-recursive 3-D algorithm can reduce communication
volume by factor of p−1/6 while increasing memory usage
by factor of p1/3

Recently, “2.5-D” algorithms have been developed that
interpolate between 2-D and 3-D algorithms, using partial
storage replication to reduce communication volume to
whatever extent available memory allows

Michael T. Heath Parallel Numerical Algorithms 78 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

References

R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and
P. Palkar, A three-dimensional approach to parallel matrix
multiplication, IBM J. Res. Dev., 39:575-582, 1995

J. Berntsen, Communication efficient matrix multiplication
on hypercubes, Parallel Comput. 12:335-342, 1989

J. Demmel, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, Communication-optimal parallel recursive
rectangular matrix multiplication, IPDPS, 2013

J. W. Demmel, M. T. Heath, and H. A. van der Vorst,
Parallel numerical linear algebra, Acta Numerica
2:111-197, 1993

Michael T. Heath Parallel Numerical Algorithms 79 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

References

R. Dias da Cunha, A benchmark study based on the
parallel computation of the vector outer-product A = uvT

operation, Concurrency: Practice and Experience
9:803-819, 1997

G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix algorithms
on a hypercube I: matrix multiplication, Parallel Comput.
4:17-31, 1987

D. Irony, S. Toledo, and A. Tiskin, Communication lower
bounds for distributed-memory matrix multiplication, J.
Parallel Distrib. Comput. 64:1017-1026, 2004.

S. L. Johnsson, Communication efficient basic linear
algebra computations on hypercube architectures, J.
Parallel Distrib. Comput. 4(2):133-172, 1987

Michael T. Heath Parallel Numerical Algorithms 80 / 81

Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

References

S. L. Johnsson, Minimizing the communication time for
matrix multiplication on multiprocessors, Parallel Comput.
19:1235-1257, 1993

B. Lipshitz, Communication-avoiding parallel recursive
algorithms for matrix multiplication, Tech. Rept.
UCB/EECS-2013-100, University of California at Berkeley,
May 2013.

O. McBryan and E. F. Van de Velde, Matrix and vector
operations on hypercube parallel processors, Parallel
Comput. 5:117-126, 1987

R. A. Van De Geijn and J. Watts, SUMMA: Scalable
universal matrix multiplication algorithm, Concurrency:
Practice and Experience 9(4):255-274, 1997

Michael T. Heath Parallel Numerical Algorithms 81 / 81

	Inner Product
	
	
	

	Outer Product
	
	
	

	Matrix-Vector Product
	
	
	

	Matrix-Matrix Product
	
	
	

