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Iterative Methods for Linear Systems

Iterative methods for solving linear system Ax = b begin
with initial guess for solution and successively improve it
until solution is as accurate as desired

In theory, infinite number of iterations might be required to
converge to exact solution

In practice, iteration terminates when residual ‖b−Ax‖, or
some other measure of error, is as small as desired

Iterative methods are especially useful when matrix A is
sparse because, unlike direct methods, no fill is incurred
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Jacobi Method

Beginning with initial guess x(0), Jacobi method computes
next iterate by solving for each component of x in terms of
others

x
(k+1)
i =

(
bi −

∑
j 6=i

aijx
(k)
j

)
/aii, i = 1, . . . , n

If D, L, and U are diagonal, strict lower triangular, and
strict upper triangular portions of A, then Jacobi method
can be written

x(k+1) = D−1
(
b− (L+U)x(k)

)
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Jacobi Method

Jacobi method requires nonzero diagonal entries, which
can usually be accomplished by permuting rows and
columns if not already true

Jacobi method requires duplicate storage for x, since no
component can be overwritten until all new values have
been computed

Components of new iterate do not depend on each other,
so they can be computed simultaneously

Jacobi method does not always converge, but it is
guaranteed to converge under conditions that are often
satisfied (e.g., if matrix is strictly diagonally dominant),
though convergence rate may be very slow
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Gauss-Seidel Method

Faster convergence can be achieved by using each new
component value as soon as it has been computed rather
than waiting until next iteration

This gives Gauss-Seidel method

x
(k+1)
i =

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
/aii

Using same notation as for Jacobi, Gauss-Seidel method
can be written

x(k+1) = (D +L)−1
(
b−Ux(k)

)
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Gauss-Seidel Method

Gauss-Seidel requires nonzero diagonal entries

Gauss-Seidel does not require duplicate storage for x,
since component values can be overwritten as they are
computed

But each component depends on previous ones, so they
must be computed successively

Gauss-Seidel does not always converge, but it is
guaranteed to converge under conditions that are
somewhat weaker than those for Jacobi method (e.g., if
matrix is symmetric and positive definite)

Gauss-Seidel converges about twice as fast as Jacobi, but
may still be very slow
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SOR Method

Successive over-relaxation (SOR ) uses step to next
Gauss-Seidel iterate as search direction with fixed search
parameter ω

SOR computes next iterate as

x(k+1) = x(k) + ω
(
x
(k+1)
GS − x(k)

)
where x

(k+1)
GS is next iterate given by Gauss-Seidel

Equivalently, next iterate is weighted average of current
iterate and next Gauss-Seidel iterate

x(k+1) = (1− ω)x(k) + ω x
(k+1)
GS

If A is symmetric, the SOR can be written as the
application of a symmetric matrix; this is the Symmetric
Succesive Over-Relaxation method
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SOR Method

ω is fixed relaxation parameter chosen to accelerate
convergence

ω > 1 gives over-relaxation, while ω < 1 gives
under-relaxation (ω = 1 gives Gauss-Seidel method)

SOR diverges unless 0 < ω < 2, but choosing optimal ω is
difficult in general except for special classes of matrices

With optimal value for ω, convergence rate of SOR method
can be order of magnitude faster than that of Gauss-Seidel
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Conjugate Gradient Method

If A is n× n symmetric positive definite matrix, then
quadratic function

φ(x) = 1
2x

TAx− xTb

attains minimum precisely when Ax = b

Optimization methods have form

xk+1 = xk + α sk

where α is search parameter chosen to minimize objective
function φ(xk + α sk) along sk

For method of steepest descent, sk = −∇φ(x)
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Conjugate Gradient Method

For special case of quadratic problem,

Negative gradient is residual vector

−∇φ(x) = b−Ax = r

Optimal line search parameter is given by

α = rTk sk/s
T
kAsk

Successive search directions can easily be
A-orthogonalized by three-term recurrence

Using these properties, we obtain conjugate gradient
method (CG ) for linear systems
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Conjugate Gradient Method

x0 = initial guess
r0 = b−Ax0

s0 = r0
for k = 0, 1, 2, . . .

αk = rTk rk/s
T
kAsk

xk+1 = xk + αksk
rk+1 = rk − αkAsk
βk+1 = rTk+1rk+1/r

T
k rk

sk+1 = rk+1 + βk+1sk
end
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Conjugate Gradient Method

Key features that make CG method effective

Short recurrence determines search directions that are
A-orthogonal (conjugate)
Error is minimal over space spanned by search directions
generated so far

Minimum error property implies that method produces
exact solution after at most n steps

In practice, rounding error causes loss of orthogonality that
spoils finite termination property, so method is used
iteratively
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Conjugate Gradient Method

Error is reduced at each iteration by factor of

(
√
κ− 1)/(

√
κ+ 1)

on average, where

κ = cond(A) = ‖A‖ · ‖A−1‖ = λmax(A)/λmin(A)

Thus, convergence tends to be rapid if matrix is
well-conditioned, but can be arbitrarily slow if matrix is
ill-conditioned

But convergence also depends on clustering of
eigenvalues of A
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Preconditioning

Convergence rate of CG can often be substantially
accelerated by preconditioning

Apply CG to M−1A, where M is chosen so that M−1A is
better conditioned than A, and systems of form Mz = y
are easily solved

Typically, M is diagonal or triangular

Types of preconditioners include
Diagonal or block-diagonal
SSOR
Incomplete factorization
Polynomial
Approximate inverse

Michael T. Heath Parallel Numerical Algorithms 15 / 39



Serial Iterative Methods
Parallel Iterative Methods

Stationary Iterative Methods
Krylov Subspace Methods

Nonsymmetric Krylov Subspace Methods

CG is not directly applicable to nonsymmetric or indefinite
systems

CG cannot be generalized to nonsymmetric systems
without sacrificing one of its two key properties (short
recurrence and minimum error)

Nevertheless, several generalizations have been
developed for solving nonsymmetric systems, including
GMRES, QMR, CGS, BiCG, and Bi-CGSTAB

These tend to be less robust and require more storage
than CG, but they can still be very useful for solving large
nonsymmetric systems
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Parallel Implementation

Iterative methods for linear systems are composed of basic
operations such as

vector updates (saxpy)
inner products
matrix-vector multiplication
solution of triangular systems

In parallel implementation, both data and operations are
partitioned across multiple tasks

In addition to communication required for these basic
operations, necessary convergence test may require
additional communication (e.g., sum or max reduction)
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Partitioning of Vectors

Iterative methods typically require several vectors,
including solution x, right-hand side b, residual
r = b−Ax, and possibly others

Even when matrix A is sparse, these vectors are usually
dense

These dense vectors are typically uniformly partitioned
among p tasks, with given task holding same set of
component indices of each vector

Thus, vector updates require no communication, whereas
inner products of vectors require reductions across tasks,
at cost we have already seen
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Partitioning of Sparse Matrix

Sparse matrix A can be partitioned among tasks by rows,
by columns, or by submatrices

Partitioning by submatrices may give uneven distribution of
nonzeros among tasks; indeed, some submatrices may
contain no nonzeros at all

Partitioning by rows or by columns tends to yield more
uniform distribution because sparse matrices typically have
about same number of nonzeros in each row or column
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Row Partitioning of Sparse Matrix

Suppose that each task is assigned n/p rows, yielding p
tasks, where for simplicity we assume that p divides n

In dense matrix-vector multiplication, since each task owns
only n/p components of vector operand, communication is
required to obtain remaining components

If matrix is sparse, however, few components may actually
be needed, and these should preferably be stored in
neighboring tasks

Assignment of rows to tasks by contiguous blocks or
cyclically would not, in general, result in desired proximity
of vector components
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Graph Partitioning

Desired data locality can be achieved by partitioning graph
of matrix, or partitioning underlying grid or mesh for finite
difference or finite element problem

For example, graph can be partitioned into p pieces by
nested dissection, and vector components corresponding
to nodes in each resulting piece assigned to same task,
with neighboring pieces assigned to neighboring tasks

Then matrix-vector product requires relatively little
communication, and only between neighboring tasks
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Graph Partitioning Methods

Combinatorial refinement (e.g., Kernighan-Lin)

Level structure

Coordinate bisection

Inertial

Spectral

Geometric

Multilevel
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Graph Partitioning Software

Chaco
Jostle
Meshpart
Metis/ParMetis
Mondriaan
Party
Scotch
Zoltan
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Two-Dimensional Partitioning
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Sparse MatVec with 2-D Partitioning

Partition entries of both x and y across processes
Partition entries of A accordingly

(a) Send entries xj to processes with nonzero aij for some i

(b) Local multiply-add: yi = yi + aijxj

(c) Send partial inner products to relevant processes

(d) Local sum: sum partial inner products
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Sparse MatVec with 2-D Partitioning
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Parallel Jacobi

We have already seen example of this approach with
Jacobi method for 1-D Laplace equation

Contiguous groups of variables are assigned to each task,
so most communication is internal, and external
communication is limited to nearest neighbors in 1-D mesh

More generally, Jacobi method usually parallelizes well if
underlying grid is partitioned in this manner, since all
components of x can be updated simultaneously
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Parallel Gauss-Seidel and SOR

Unfortunately, Gauss-Seidel and SOR methods require
successive updating of solution components in given order
(in effect, solving triangular system), rather than permitting
simultaneous updating as in Jacobi method
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Row-Wise Ordering for 2-D Grid

G (A)
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Red-Black Ordering

Apparent sequential order can be broken, however, if
components are reordered according to coloring of
underlying graph

For 5-point discretization on square grid, for example, color
alternate nodes in each dimension red and others black,
giving color pattern of chess or checker board

Then all red nodes can be updated simultaneously, as can
all black nodes, so algorithm proceeds in alternating
phases, first updating all nodes of one color, then those of
other color, repeating until convergence
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Red-Black Ordering for 2-D Grid

G (A)
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Multicolor Orderings

More generally, arbitrary graph requires more colors, so
there is one phase per color in parallel algorithm

Nodes must also be partitioned among tasks, and load
should be balanced for each color

Reordering nodes may affect convergence rate, however,
so gain in parallel performance may be offset somewhat by
slower convergence rate
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Sparse Triangular Systems

More generally, multicolor ordering of graph of matrix
enhances parallel performance of sparse triangular
solution by identifying sets of solution components that can
be computed simultaneously (rather than in usual
sequential order for triangular solution)
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Asynchronous or Chaotic Relaxation

Using updated values for solution components in
Gauss-Seidel and SOR methods improves convergence
rate, but limits parallelism and requires synchronization

Alternatively, in computing next iterate, each processor
could use most recent value it has for each solution
component, rather than waiting for latest value on any
processor

This approach, sometimes called anynchronous or chaotic
relaxation, can be effective, but stochastic behavior
complicates analysis of convergence and convergence rate
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