Extends the mlr3 machine learning framework with spatio-temporal resampling methods to account for the presence of spatiotemporal autocorrelation (STAC) in predictor variables. STAC may cause highly biased performance estimates in cross-validation if ignored. A JSS article is available at <doi:10.18637/jss.v111.i07>.
| Reference manual: | mlr3spatiotempcv.html , mlr3spatiotempcv.pdf |
| Vignettes: |
Getting Started (source, R code) Spatiotemporal Visualization (source, R code) |
| Package source: | mlr3spatiotempcv_2.3.4.tar.gz |
| Windows binaries: | r-devel: mlr3spatiotempcv_2.3.4.zip, r-release: mlr3spatiotempcv_2.3.4.zip, r-oldrel: mlr3spatiotempcv_2.3.4.zip |
| macOS binaries: | r-release (arm64): mlr3spatiotempcv_2.3.4.tgz, r-oldrel (arm64): mlr3spatiotempcv_2.3.4.tgz, r-release (x86_64): mlr3spatiotempcv_2.3.4.tgz, r-oldrel (x86_64): mlr3spatiotempcv_2.3.4.tgz |
| Old sources: | mlr3spatiotempcv archive |
| Reverse suggests: | mlr3verse |
Please use the canonical form https://CRAN.R-project.org/package=mlr3spatiotempcv to link to this page.