
EC-Store: Bridging the Gap Between Storage and
Latency in Distributed Erasure Coded Systems

Michael Abebe, Khuzaima Daudjee, Brad Glasbergen, Yuanfeng Tian

Cheriton School of Computer Science, University of Waterloo

{mtabebe, kdaudjee, bjglasbe, y48tian}@uwaterloo.ca

Abstract—Cloud storage systems typically choose between
replicating or erasure encoding data to provide fault tolerance.
Replication ensures that data can be accessed from a single site
but incurs a much higher storage overhead, which is a costly
downside for large-scale storage systems. Erasure coding has a
lower storage requirement but relies on encoding/decoding and
distributed data retrieval, which can result in straggling requests
that increase response times. We propose strategies for data
access and data movement within erasure-coded storage systems
that significantly reduce data retrieval times. We present EC-
Store, a system that incorporates these dynamic strategies for
data access and movement based on workload access patterns.
Through detailed evaluation using two benchmark workloads,
we show that EC-Store incurs significantly less storage overhead
than replication while achieving better performance than both
replicated and erasure-coded storage systems.

Keywords-distributed storage, erasure coding, replication, data
movement, data placement

I. INTRODUCTION

The need to store and retrieve big data has fueled the

development and adoption of cloud storage systems. In cloud

deployments, however, machines frequently experience down-

time. For example, Google observed that at any point in

time, up to 5% of the nodes within their storage system

were unavailable [12]. To ensure data remains available in

the presence of these failures, systems must be fault tolerant.

Large-scale distributed storage systems typically provide fault

tolerance either by replicating [4,14] or erasure encoding data

[11,15,19,23,30,52]. Replication creates complete copies of

data, incurring a significant storage overhead over erasure

coding that partitions data and stores the partitions and their

parity fragments on multiple nodes to provide the same level

of fault tolerance as replication. Consequently, while erasure

encoding stores less data, accessing it requires multi-node

retrieval resulting in an increase in data access cost compared

to replication [51].
To demonstrate that performance in erasure-coded dis-

tributed storage systems is largely determined by the cost of

data retrieval, we show a breakdown of average response times

in Figure 1 for a workload that retrieves multiple 100 KB

blocks.1 The response time is divided into four categories:

the cost of locating data (metadata access), determining which

data chunks to retrieve (access planning), retrieving data, and

decoding data. As Figure 1 shows, the performance difference

between replication and erasure coding is primarily due to

1Details are in Section VI.
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Fig. 1: Response time breakdown for replication and erasure

coding under skewed access. Data retrieval times dominate the

overall response time.

the time it takes to retrieve data, which dominates overall

response times. However, while both systems can tolerate the

same number of faults (two, in the example of Figure 1), the

replicated system stores 50% more data than the erasure-coded

system. These differences motivate a fault tolerant storage

system that can achieve the best of both worlds: low storage

overhead and low latency data retrieval.

When compared to replicated data stores, retrieval costs are

higher for erasure-coded storage systems because of the effects

of stragglers: the time taken to retrieve the slowest, or strag-
gling, data chunk dominates retrieval time [19,29]. Even when

parallelism is leveraged, straggler effects are more pronounced

in systems that must wait for multiple requests to complete

(e.g. in erasure-coded storage) than in systems that wait for

only a single request to complete (e.g. in replicated stor-

age) [9,26,46,49,53]. Given that large-scale storage systems

are typically deployed in distributed environments, concurrent

clients issuing requests in parallel over the distributed storage

system inevitably result in the occurrence of stragglers [9].

In our erasure-coded storage system, EC-Store, we propose

a novel approach to the stragglers problem: intelligently select

chunks to retrieve so as to avoid stragglers. This dynamic data
access strategy uses chunk location information to generate

a cost-effective strategy on-the-fly for data retrieval. By in-

corporating this strategy in EC-Store, we reduce data access

latencies and satisfy our best of both worlds goal.

To mitigate the effects of stragglers, some systems use a

late binding strategy [19,38,49] in which additional requests

are made and the slowest responses are ignored. Late binding

can reduce response time but places additional load on the

system: responses that will be ignored must still be generated.

In contrast, EC-Store’s dynamic data access strategy offers

excellent performance and places little additional load on the
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system. Moreover, if additional load can be tolerated, EC-Store

can incorporate late binding by intelligently issuing additional

requests and ignoring the slowest responses.

EC-Store is designed to take advantage of workloads that

contain multi-item retrievals. Such workloads are common [21,

31,39]; for example, all images on a web page are retrieved

from a storage system. The items in multi-item requests are

often correlated by application semantics [21,28,39]. EC-Store

leverages these correlated access patterns to dynamically co-

locate data items that are accessed together, thereby reducing

chunk retrieval times. EC-Store considers the location of

the chunks and their correlations to generate effective data

placement and flexible data access plans that enable efficient

data retrieval.

The contribution of our work is three-fold: (i) We demon-

strate how the performance of erasure-coded storage systems

can be improved significantly through dynamic data placement

and data access to mitigate retrieval costs (Section III). We

formulate our data access and movement strategies as cost

functions with the aim of minimizing expected cost (Sec-

tion IV). (ii) We present EC-Store, a system that incorporates

the efficient design and implementation of our techniques

(Section V). (iii) Through detailed evaluation of EC-Store

using both the Yahoo! Cloud Serving Benchmark [7] and a real

workload trace of Wikipedia image accesses [47], we validate

that our techniques deliver low overhead, fault tolerant, low

latency data access for storage systems (Section VI).

II. ERASURE CODED STORAGE AND FAULT TOLERANCE

Formally, systems provide r-fault tolerance if they can

tolerate r independent faults.2 Replicated storage systems

provide r-fault tolerance under the fail silent assumption [5]

by writing data to r + 1 different locations. Therefore, if r
copies of the data become unavailable due to failures, one copy

remains available. Many systems default to storing a total of

three copies of each data item [4,14].

Erasure codes can provide the same or better fault toler-

ance guarantees than replication, but with significantly lower
storage requirements [51]. Maximum distance separable codes,

such as Reed-Solomon (RS) codes, create k+r chunks of data

from an original block of data so that it is possible to recreate

the original data from any of the k chunks [40]. Data encoded

with these codes are able to tolerate the unavailability of any

r of its k+ r chunks of data, and is therefore r-fault tolerant.

For a block of data encoded with RS codes parameterized

by k and r (denoted as RS(k, r)), the original block of data

is divided into k ≥ 2 chunks from which r parity chunks

are generated. Therefore, storing data that has been encoded

requires a factor of k+r
k times the amount of storage needed

for a single copy of the data. Because replication stores r+1
times the amount of data, and k ≥ 2, erasure coding uses less

space to provide the same level of fault tolerance. However,

unlike replication, erasure coding requires that a block access

retrieves k of the blocks’ chunks in parallel followed by

2We avoid using the terminology k-fault tolerance, as the variables k and
r conflict with standard notation used to describe erasure coding.

(a) Under load

(b) After movement

Fig. 2: Data access and movement strategies improve perfor-

mance. Client R3 is offered a load aware strategy and does

not access the overloaded site S5. Client R4 accesses fewer

sites after A3 is moved from S5 to site S4.

a decoding step to reconstruct the data. In this paper, we

focus on encoding schemes that access k chunks without the

presence of a complete copy of a data block, such as in

Facebook’s f4 [30] and Windows Azure Storage [19], because

these schemes reduce the storage overhead.

Like other erasure coded storage systems, EC-Store pro-

vides an interface to access and store data as blocks [4,11,

19,52]. Each block is identified by a primary key and has a

well-known size, although EC-Store can flexibly accommodate

used-defined block sizes.

III. MOTIVATING EXAMPLE

Straggling chunks lead to stalls in data retrieval for erasure-

coded storage: a client cannot continue until all k chunks

have been retrieved. Thus, one slow chunk retrieval request

can drastically increase the overall request latency. Straggling

chunks occur when a site is unable to keep up with the rate

that other sites service retrieval requests. Therefore, where

data is placed — and how it is accessed — plays a crucial

role in performance. We demonstrate the effect that dynamic

data access and movement strategies can have on performance

using a simple example. Figure 2 shows the storage of data

using an RS(2,1) encoding scheme. This scheme requires

storing each data item as three chunks, and reconstructing the

data item requires retrieving any two of its chunks.

In Figure 2a, data item A has chunks A1, A2, A3 stored

at sites S2, S3, S5 respectively. Suppose a client R1 wishes

to retrieve data items A and B. The arrows indicate that R1

retrieves data from sites S1, S3 and S5. The presence of a

popular chunk H1 on site S5, accessed by a second client

R2, causes S5 to be under higher load. Consequently, R1’s

request at S5 is slow and the request becomes a straggler. An

alternative, load-aware data access strategy is offered to client

R3, allowing it to avoid requesting a chunk of A from S5 and

instead retrieve it from site S2. This data access strategy avoids

accessing the overloaded site S5 and waiting for a straggling

chunk. We can improve performance further by moving chunk

A3 from site S5 to S4, as in Figure 2b. This movement allows

for co-located data access for client R4 that can now retrieve
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A and B by accessing only two sites. By accessing fewer

sites, the number of requests that must be issued and serviced

is reduced thereby reducing the likelihood of stragglers and

consequently improving performance [9]. The movement of

A3 will reduce load on S5, resulting in additional improvement

in performance for client R2.

Although Figure 2 presents a simple motivating example, re-

ality presents a much more complex and challenging environ-

ment. In large-scale storage systems, data is distributed across

many sites, and access patterns resulting from concurrent

client workloads typically overlap. As a result, the objectives

to co-locate data and maintain even load distribution can

conflict. Erasure coding provides great flexibility for how data

should be accessed and placed. We leverage this flexibility by

constructing a cost model that captures and compares different

data access and placement options to select the most effective

strategy for minimizing access cost. In the next section, we

describe how we formulate this model and solve the data

access and movement problem, allowing us to overcome the

aforementioned challenges.

IV. DYNAMIC DATA ACCESS AND MOVEMENT

STRATEGIES

In addition to load imbalance, several other factors can also

cause straggling chunks. For instance, the rate at which data is

retrieved from a storage device, how quickly data is sent over

the network, and the rate at which client requests are serviced

all contribute to slow chunk retrieval times. Load imbalance

itself can be the result of skew in item popularity, data size,

or the number of items that are retrieved [46,53].

With these factors in mind, we have developed data access

strategies that minimize expected retrieval time. As shown

in Figure 2, our data access strategy reduces the number of

distributed requests by accessing sites that have co-located

data. By placing data so as to minimize distributed access,

we develop a data movement strategy that promotes data co-

location based on application access patterns. To ensure that

load remains evenly distributed, our data movement strategy

uses load statistics to relocate data to spread load away

from overloaded sites. Finally, as data access and movement

strategies allow for alternate choices, we develop our strate-

gies as optimization problems. This optimization formulation

quantifies the effects of different data movement choices and

allows us to efficiently select access strategies that minimize

expected costs, enabling the selection of data movement plans

that improve both data access performance and load balance.

As our formulations for data access and movement strategies

rely on descriptions of system state, we introduce notation to

describe state next.

A. Notation
Table I summarizes our notation. We refer to an individual

block as Bi, and the size of its chunks as zi. We refer to the

j-th site (physical machine) as Sj . We use a binary variable

ci,j to indicate whether a chunk of Bi is present at site Sj .

Note that if Bi is a (ki, ri)-encoded block, from the definition

Chunk and Site Selection Variables

C = ci,j = 1 State of blocks in system: Bi has a chunk at Sj

si,j = 1 Bi’s chunk at Sj was selected to be read

aj = 1 Site Sj was selected to be accessed.
Formula

cost(C,Q)
The estimated read cost of performing request Q
when the system is in state C

Δ(C, b, s, d)
The estimated gain of moving Bb’s chunk from site
Ss to Sd

Cost Model Parameters

oj The performance overhead of accessing site Sj

mj
The overhead of performing a read on the storage
media present at site Sj

zi The size of block Bi’s chunks

TABLE I: Notation used and their meaning

of (ki, ri) erasure coding, there are exactly ki + ri such ci,j
that are 1. That is, two chunks from the same block cannot

be located at the same site as otherwise the r-fault tolerance

guarantees are violated. We consider the state of the system

to be a numBlocks × numSites matrix C with entries ci,j
representing the chunk placements.

To denote access decisions, we use the binary variable

si,j = 1 to indicate that a chunk from block Bi located at

site Sj was selected for access. To indicate that site Sj was

accessed, we use the shorthand aj =
∨

i si,j .

B. Estimating Data Access Cost
For evaluating the cost of performing a read request, EC-

Store considers two key factors: the overhead of accessing a

remote site, and the retrieval cost of each requested chunk at

that site.
Modelling Access Costs: Given an access plan that satisfies

a request for a set of blocks Q = {Bi}, we model the access

cost cost(Q) in Equation 1 as follows. For each site Sj that is

considered accessed, that is aj = 1, there is an associated

overhead of accessing that site denoted by oj that can be

determined dynamically and allows adaptation as system load

changes. This overhead includes factors such as the network

latency of accessing a remote site, and the time between when

a request is received and when it is processed at a remote site.

This time interval is influenced by site load — a site under

high load will experience a longer delay before a request is

finished processing. The cost of retrieving a chunk from a site

depends on the rate that I/O can be performed on the storage

media at the site, represented by mj , and the amount of data

that is retrieved, zi. Our model incorporates this access cost

by multiplying these factors (mj · zi).
cost(Q) =

∑

j

(
(oj · aj) +

∑

Bi∈Q
(si,j ·mj · zi)

)
(1)

Satisfying Access Constraints: Given our cost model, a

client should minimize the cost of access while satisfying the

constraints imposed by the system state, the request, and the

erasure coding parameters. To determine the optimal access

plan, we minimize cost(Q) over all valid combinations of the

binary decision variables si,j . Observe that for any instance of

the problem, oj , mj and zi are constant and therefore cost(Q)
is a linear function in terms of si,j . Thus, if we can also

define linear constraints that generate valid combinations of

si,j , we can exploit existing integer linear programming (ILP)
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tools to compute an optimal solution. We present two linear

inequalities in Equations 2 and 3 that provide the necessary

constraints for our ILP formulation.

The first constraint (Equation 2) ensures that any access

plan retrieves at least ki chunks for each block Bi in the

request, guaranteeing that the block can be reconstructed by

the property of maximum distance separable codes. A chunk

must both exist at a site (ci,j = 1) and be selected for access

(si,j = 1) for it to be counted towards Bi’s required ki chunks

for retrieval. The second constraint (Equation 3) enforces that

a site sj is considered accessed, that is aj = 1, if any chunk

located at that site is accessed.3∑

j

(ci,j · si,j) ≥ ki, ∀Bi ∈ Q (2)

( |Q| · aj
)−

∑

Bi∈Q
si,j ≥ 0, ∀Sj (3)

Selecting an Optimal Access Plan: Our cost model is used

to determine the optimal data access plan and the associated

cost of that access. We denote this cost as cost(C,Q) as it

depends not only on the query Q but also on the state of the

system, C. We formally define the ILP problem as follows:

cost(C,Q) = min
C

cost(Q)

subject to constraints in Equations 2 and 3.
(4)

1) Late Binding
As mentioned earlier, late binding [38] is a complementary

approach to our techniques. Late binding requests k+δ chunks

where 0 < δ ≤ r, but waits for only the first k responses. Our

cost model can support late binding with a slight modification.

By changing the right hand side of Equation 2 to ≥ ki+δ, our

cost model incorporates the late binding strategy by enforcing

a data access plan that will retrieve ki+δ chunks for each block

in the request. Furthermore, our cost model will optimize the

request for an additional δ chunks so that data access has the

lowest cost estimate.

C. Estimating Chunk Movement Gain
As data movement affects data accesses, we use our cost

model to estimate access costs after movement. Our data

movement strategy considers the effect of moving a single

chunk at a time. By doing so, we efficiently compute the

expected performance gains from moving the chunk. In this

section, we describe our function that quantifies the effect

of moving a chunk, deferring discussion to Section IV-D for

how this function is used. Similarly to our methodology for

estimating the cost of executing a request, by quantifying the

effects of movement, we are able to compare multiple data

movement strategies and select the best strategy for execution.

EC-Store considers two important factors when measuring

how moving a chunk affects the system: how movement affects

data access costs, and how it affects the distribution of load

to sites that store data. We present each of these factors

3If a site is accessed then
∑

Bi∈Q si,j ≥ 1. However, no more than |Q|
chunks can be requested from a single site. Therefore, if the site is accessed
then aj must be set to 1 for the inequality to hold.

separately before merging them into a single cost function.

Each computation is formulated such that a positive result

represents an expected performance improvement, a zero result

denotes no expected change in performance, and a negative

value implies an expected performance degradation.
Consider the case where we wish to evaluate moving block

Bb’s chunk from source site Ss to destination site Sd. To

ensure r-fault tolerance, site Sd must be chosen so that it does

not already contain a chunk of Bb. We represent this change

in system state by creating a new state matrix Cb,s,d from C.4

Change in Data Access Costs: To estimate the change in

data access costs, we compare the cost of data access under

the existing system state to the cost of the next future state. It

is infeasible to consider the effect of chunk movement on all

queries, so we assemble a set of queries that reflect how block

Bb has been historically accessed. Specifically, we generate

queries that are of the form {Bb, Bi}, such that Bi is a block

that has appeared in a prior client query that also contained Bb,

that is {Bb, Bi} ⊆ Q for some client submitted query Q. To

ensure that infrequent accesses are not considered as important

as frequent accesses, we weight the change in data access

costs by the likelihood that Bb and Bi were accessed together,

captured statistically as λb,i = P ({Bb, Bi} ⊆ Q|Bb ∈ Q).
Equation 5 summarizes how we quantify the change in data

access costs, comparing the before and after costs for each

generated query weighted by access likelihood:
E(C, b, s,d) =

∑

bi∈B

(
cost(C, {Bb, Bi}) − cost(Cb,s,d, {Bb, Bi})

) · λb,i

(5)
For the example in Figure 2, we would observe that accessing

data would have lower estimated cost after moving A3, as

in Figure 2b. As a result, this movement plan would have a

positive value for E(C, b, s, d).
Quantifying System Load: In addition to the estimated

change in data access costs, we consider the effect of moving

a chunk on the load of a system. Recall that high load at a

site can slow data retrieval requests at that site, which leads

to stragglers [19]. To avoid the effects of skewed load, we

strive to distributed load evenly across sites. To achieve this

load balance, we promote data movement from heavily loaded

sites to lightly ones. We model site load before and after data

movement to quantify load balance improvements.
We calculate the load at site Sj in state C as ω(C, Sj)

from the site’s CPU utilization and I/O load. We observed that

these factors were correlated with the rate at which requests

were serviced. To model the load at a site after movement,

ω(Cb,s,d, Sj), we proportionally shift the CPU utilization and

I/O load from the source site to the destination site based on

chunk size and chunk access likelihood.
Normalizing System Load: To represent the degree to

which a site has diverged from the average load ω̃(C), we

define a site load balance factor as: Ω(C, Sj) =
∣∣∣1− ω(C,Sj)

ω̃(C)

∣∣∣.

4To change the system state we set cb,s,db,s to 0, cb,s,db,d to 1, and leave other

values in Cb,s,d unchanged from C.
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Algorithm 1 selectMovementPlan

1: blocksUnderConsideration =

GETCANDIDATEBLOCKS(); � Recent & frequent blocks

2: Scoreopt = 0; � Init. Bb−opt, Ss−opt, Sd−opt to NULL

3: for all Block Bb : blocksUnderConsideration do
4: candidateDestinations =

GETCANDIDATEDESTINATIONS(Bb); � Exclude sites

where Bb’s chunks are present
5: for all Chunk c : Bb.chunks do
6: Site Ss = c.chunk location; � Ss is the source site;

7: for all Site Sd : candidateDestinations do � Sd is a

potential destination;

8: Score = Δ(C,Bb, Ss, Sd);

9: if Score > Scoreopt then
10: (Scoreopt, Bb−opt, Ss−opt, Sd−opt) =

(Score,Bb, Ss, Sd);

11: return (Bb−opt, Ss−opt, Sd−opt);

If Ω(C, Sj) = 0 then Sj has exactly average load, but as

Ω(C, Sj) continues to increase, Sj drifts away from average

load. In Figure 2a, site S5 would have a larger Ω(C, S5) value

than Ω(C, S4) as S5 is under higher than average load.

Estimating Change in System Load: We consider the

effect of load created by data movement on both the source and

destination site by using the load balance factor of the most

imbalanced site. To represent the load of the most imbalanced

site, we construct Ω(C, Ss, Sd) given by Equation 6:

Ω(C, Ss, Sd) = max(Ω(C, Ss),Ω(C, Sd)) (6)

The difference between Ω(C, Ss, Sd) and Ω(Cb,s,d, Ss, Sd)
represents the change in load balance factors at the source

and destination as a result of chunk movement, which we

summarize as I(C, b, s, d) in Equation 7. In Figure 2, we

observe that moving data from site S5 to S4 will decrease the

load factor of S5, resulting in a positive I(C, b, s, d) value.

I(C, b, s, d) = Ω(C, Ss, Sd)− Ω(Cb,s,d, Ss, Sd) (7)

Estimating Benefit from Chunk Movement:
To combine the two factors, namely, effect of data access

and effect on load, we sum Equations 5 and 7. To control the

relative influence of the two factors, we use weight parameters

w1 and w2. The total estimated benefit of moving block Bb’s

chunk from source site Ss to destination Sd when the system

is in state C is represented by Δ(C, b, s, d) in Equation 8.

Δ(C, b, s, d) is positive if the movement of the chunk is

expected to be beneficial and negative if it is expected to

worsen costs.

Δ(C, b, s, d) = w1 · E(C, b, s, d) + w2 · I(C, b, s, d) (8)

D. Selecting Chunks for Movement
The previous section described how expected changes in

system performance are measured both in terms of data

accesses and load distribution when moving chunks. We select

chunks for movement and their target destinations through

the use of movement plans. A movement plan consists of

a block Bb, a site Ss containing a chunk of Bb, and a

candidate destination site for that chunk Sd. As it is infeasible

Fig. 3: System architecture showing division of control and

data planes including processes for reading (R1-R3) and

writing data (W1-W3).

to compute expected performance gains exhaustively for every

movement plan (Bb, Ss, Sd), we employ a heuristic strategy

for generating movement plans. Our heuristic is guided by two

principles: recently accessed blocks are likely to be accessed

again [21], and sites that are under heavy load contribute to

the straggling chunk problem [19].

We summarize how we select a plan for data movement

in Algorithm 1. We first retrieve a set of blocks that are

candidates for movement because they have been recently

accessed (Line 1). We probabilistically generate this set based

on access likelihood, which allows us to explore the effect of

moving many other different data items. For each candidate

block, we consider moving its chunks to new destination

locations (Line 4). Finally, for each candidate movement

plan, we compute the expected benefit of executing the move

(Line 8).

At any point in time we can halt execution of Algorithm 1

and execute the movement plan that has the best score so far.

Therefore, we use early stopping conditions when searching

for candidate plans and greedy subroutines that return lists

of candidates ordered by the best candidate first. For instance,

Line 5 iterates over chunks ordered by site load so that chunks

located at the most heavily loaded site are evaluated first.

V. EC-STORE: ARCHITECTURE AND IMPLEMENTATION

We have developed EC-Store, a system that incorporates the

design and implementation of our data access and movement

strategies. Similar to other systems, EC-Store clients store and

access data by communicating with a service API to put a

block, read block(s), or delete a block [4,11,19,52]. Figure 3

shows the steps involved for reading and writing data. Our

system inserts an additional step to decide how data should

be placed (W1) and accessed (R2).

EC-Store’s architecture is logically separated into two com-

ponents: a control plane and a data plane. The data plane

consists of sites that execute a storage service to manage the

storage and retrieval of chunks. The location of each block’s

encoded chunks within the data plane are managed by the

metadata service in the control plane, which implements the

strategies described in Section IV.
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EC-Store services were developed in C++ and communicate

with each other using remote procedure calls through the

Apache Thrift library [44]. We use the Jerasure 2.0 library [34]

for encoding and decoding blocks. Next, we describe the

functionality and implementation of the statistics, chunk place-

ment, and repair services.

A. Statistics Service
To maintain load and access correlation statistics used by the

data movement strategies described in Section IV, a statistics

service is provided. This service approximates each site’s load

by tracking the CPU utilization, I/O load, and the number

of chunks stored at each site. These values are reported by

storage services to the statistics service at regular intervals,

and used as ωj in our data movement strategy. Statistics

are reported every 5-10 seconds, which we found provided

up-to-date information. The statistics service also maintains

information on sampled block access patterns within a slid-

ing interval of previous requests. Each block co-access pair

(Bb, Bi) within a sampled request is tracked to compute the

conditional likelihood of block co-access, stored as λb,i. When

the access pattern exits the interval of previous requests, the

likelihood of co-access is adjusted so that the statistics service

can capture changes in workload. Tracking likelihoods and

reporting statistics more frequently would require more space

and increase communication overheads but provide higher

accuracy. In our experiments, we tracked a sliding interval

of 5000 requests which was large enough to capture access

correlations.

B. Chunk Placement Service
The chunk placement service consists of two sub-modules

that provide EC-Store with strategies for data access and data

movement: the chunk read optimizer and the chunk mover.

1) Chunk Read Optimizer
To access data, the client service calls into a local chunk

read optimizer, which receives chunk locations for a set of

blocks that a client wishes to read and returns the set of chunks

that should be retrieved from each site. The read strategy is

computed by finding the solution to the cost(C,Q) function

as described in Section IV-B using the SCIP library [1] as an

ILP solver.

Preliminary experiments showed that solving the ILP prob-

lem to decide on a data access strategy took in the order of

tens of milliseconds, which is much higher than the access

costs that were observed in Figure 1. To address this latency

concern, we cache and reuse previous access plans that satisfy

a new request for data access. If there is no access plan in the

cache that can satisfy the request then we generate an access

plan using a greedy heuristic, which works as follows. We

decide for each block whether a given chunk will be retrieved

based on the state of the existing access plan. If a chunk for

the requested block is present at an accessed site, that chunk

is added to the access plan. If k chunks for the block have not

been added to the access plan, after all previously accessed

sites in the plan are examined, sites for the remaining chunks

are randomly selected.

An access plan cache miss triggers a background worker

thread that solves the data access problem using the ILP solver.

Once the ILP solution is computed, it is stored in the cache

and replaces the greedy solution, enabling all future requests

for the same blocks to use the ILP solution without the need

to solve the ILP problem. When the cost parameters in the

ILP problem change as a result of new system state, we

dynamically reload solutions.

2) Chunk Mover
The chunk mover is responsible for asynchronously mov-

ing chunks within the system to improve block co-access

performance and load balance. The chunk mover executes

Algorithm 1 to select a movement plan to copy the chunk

from source to destination. The block metadata is then updated

to reflect the new chunk location, and the old chunk can be

deleted as all future accesses receive the new chunk location.

The chunk mover can throttle the rate at which chunks are

moved to ensure that data movement does not add overhead

to the system, as we experimentally show in Section VI-C5.

3) Parameter Choices
The data access and movement strategies employed by the

chunk placement service are parameterized for generality. The

cost model depends on two factors: oj and mj that reflect

the cost of accessing a site and the cost of reading from a

site, respectively. We dynamically set oj for each site based

on the average response time of periodic load-status requests

to storage services. These requests are decoupled from data

access requests and therefore measure request processing time.

Thus, an increase in load proportionally increases the response

time of load-status requests. We empirically determined mj

by measuring the time taken to retrieve increasing numbers

of chunks from a single site. Because our experiments were

conducted on homogeneous hardware, we set mj to be the

same value for each machine. We found that an approximate

value of mj , normalized to an average value of oj , was mj = 1
when oj = 5. Both the chunk read optimizer and chunk mover

receive the oj and mj parameters from the statistics service

to support dynamic strategies for data access and movement.

In our data movement strategy, w1 and w2 weight the

expected improvement in query performance and expected

improvement in load balance, respectively. The largest value

for I(C, b, s, d) is 1, and occurs when the system state changes

from unbalanced to perfectly balanced. Figure 2 shows an

example of accessing one less site after data movement, which

results in E(C, b, s, d) = avg(oj). Initially, we set w1 = 1
and w2 = avg(oj) = 5 to balance the factors, but then

performed a parameter search by varying w2. Empirically, we

found that (w1 = 1, w2 = 3) yielded the best performance,

which indicates that expected query performance is the more

dominant factor in the data movement strategy.

As discussed in Section II, erasure coded storage systems

must choose parameters k and r. By default, we use a k =

260



2, r = 2 encoding scheme. Choosing a value of k poses a

trade-off: larger values of k reduce the storage overhead, but

must access more sites in parallel and therefore incur higher

access costs. Hence, k = 2 is a popular option for applications

aiming to reduce access costs [38].

C. Repair Service
To ensure availability in the presence of node failures, EC-

Store reconstructs chunks on sites that have failed. The repair

service polls each site’s storage service and marks the site

unavailable for access if it does not respond. The repair service

waits 15 minutes, as in GFS [12], before reconstructing chunks

using our data movement strategy to select chunk destinations.

VI. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of

our EC-Store system. We first describe the experimental setup

and then present system performance results.

A. Experimental Setup
The objective of our experiments is to evaluate how our

data placement and access strategies improve performance,

and to verify that our system operates with low overhead. We

compare our techniques against replication (R) and traditional

erasure coding (EC), which use the strategies of random data

placement and access [38]. Although strategies exist for re-

ducing replication response times as discussed in Section VII,

we use a randomized strategy because it offers a baseline

comparable to erasure coding, and it is common in many

systems [10,24]. We compare these baselines against our two

configurations of data access: (i) erasure coding with our cost

model (EC+C), and (ii) erasure coding with our cost model

and chunk movement (EC+C+M). This setup allows us to

differentiate the performance contribution of the cost model

for data access from that of data movement. To investigate the

effects of additional requests, we also evaluate erasure coding

with late binding (EC+LB) and our data movement and access

strategy with late binding (EC+C+M+LB). All configurations

are implemented into EC-Store.

Our experimental testbed consists of 36 identical machines,

of which 32 machines are used to co-locate the I/O intensive

storage service with the compute intensive EC-Store client

service. The remaining four machines are allocated, one each,

to the metadata service, the chunk placement service, the

statistics service, and for running the benchmark workload.

All machines are within the same local area network, in-

terconnected by a 10 Gb Ethernet link. Each machine runs

Ubuntu 16.04, and has 12 physical cores (two Intel E5-2620v2

processors), 32 GB of memory, and 1 TB of local disk storage

(Seagate Constellation ES.3 6 Gb/s SATA hard drives).

To tolerate two faults, we use a RS(2,2) block encoding

scheme for erasure coding, and keep 3 copies of all blocks for

replication. Under these configurations replication stores three

times, and erasure coding two times, the amount of original

data. Therefore, replication stores 50% more data than erasure

coding while providing the same level of fault tolerance.

B. Benchmarks
We use two benchmarks that store and retrieve objects

of various sizes to evaluate our data access strategies and

techniques. The first benchmark is the popular YCSB-E

workload [7] that retrieves ranges of keys together as in a

messaging system. Items within the same range are correlated

and accessed together, representing a chain of messages within

a conversation [7]. The second benchmark is a trace of pages

of Wikipedia image accesses [47]. All images on a page

are retrieved when a page is loaded, resulting in correlations

between images that appear on the same page. The likelihood

of retrieving a page of images is derived from the trace and

follows a Zipf distribution [47]. Both the number of images

on a page and image sizes follow a power law distribution.

The median page consisted of about 10 images, and the

median image was approximately 500 KB in size. Images on

Wikipedia are treated as static resources, making them good

candidates for storing within a block storage system.

Both benchmarks employ a configurable number of concur-

rent clients that submit requests independently with zero think

time between requests. Unless otherwise stated, our default

number of clients was 100. Our experimental methodology is

as follows. For the YCSB-E benchmark workload, the system

is first loaded with 1 million blocks of fixed size. A warm

up scan workload is run for 20 minutes, accessing keys with

a uniform distribution. A second scan workload is then run

for 20 minutes over which we collect performance measure-

ments, this time accessing keys using a power law distribution

(with default exponent 1) to effect workload change. For our

Wikipedia experiments, each trace requests a set of blocks

corresponding to the images found on a specific page over a

measurement interval of 20 minutes after a warm-up run of

the same type and duration as in the YCSB experiments.

C. Experimental Results
In this section, we present and discuss results for our

experiments with the YCSB and Wikipedia workloads. All

results presented are the average of five runs with bars around

the mean representing 95% confidence intervals.

1) Response Time
We study data access performance using a YCSB-E work-

load and show the average response time, over time in

Figure 4a, for each of the configurations. In this figure,

response time for our data access strategy (EC+C) and our

access and movement strategy (EC+C+M) start similarly before

EC+C+M decreases over the first 8 minutes. The movement

strategy quickly learns the workload pattern and moves data to

balance load and co-locate co-accessed data items that together

improve response times. Recall that the workload change

results from inducing skew in data item access. Therefore, our

movement strategy reduces response times is a consequence of

dissipating the effects of skew. By the end of the experiment,

we observe that our data access and movement strategies

achieve a 40% improvement in latency over baseline erasure

coding. Furthermore, we reduce latencies by 20% compared
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Fig. 4: Experimental results for YCSB-E and Wikipedia experiments. Data access and movement strategies significantly improve

performance over standard techniques, by reducing the time taken to retrieve chunks.

to replication while using only two-thirds of the storage space

that replication uses. Our data access strategy (EC+C) alone

reduces response time by 15% compared to erasure coding,

demonstrating the benefit of our cost model.

Figure 4b shows a breakdown of average response time

from the YCSB experiment into four categories: accessing

metadata, determining an access strategy, retrieving chunks,

and decoding the chunks into a block. As noted in Section I,

the most dominant factor in the response time is retrieval of

chunks from the storage services and not the overhead from

block decoding. Metadata access and generation of strategy

for data access also make up a small portion of the remaining

response time. The figure demonstrates that the improvements

come from reducing data retrieval time resulting from the

utilization of our techniques.

The figure also includes late binding (δ = 1), a common ap-

proach for improving erasure-coded storage data retrieval per-

formance. EC+C+M’s proactive data movement and minimiza-

tion of access costs reduces the time taken to retrieve data by

30% when compared to late binding (EC+LB). Our technique

places little extra load on the storage system (Section VI-C5),

but late binding increases load by making additional chunk

requests (Section VI-C2). Because our techniques and late

binding are complimentary, they can be combined as described

in Section IV-B1. This tandem approach (EC+C+M+LB) re-

duces the retrieval latency of late binding (EC+LB) by 40%.

In Figure 4c, we plot a cumulative distribution function

(CDF) of the tail response times from the YCSB experiment.

We observed that in the lower percentiles, the performance

Tech-
nique

R EC
EC
+LB

EC
+C

EC
+C+M

EC+C
+M+LB

λ 45.4 43.0 22.8 31.1 24.5 19.8

TABLE II: λ values for experimental techniques in YCSB 100

KB block experiment. Lower λ values indicate lower levels of

load imbalance.

difference between replication and erasure coding is the time

taken to decode blocks. At the tail, overall response times

increase because chunk retrieval time increases but the other

components of response time remain constant. More con-

cretely tail retrieval times are where the effects of straggling

chunks are observed, presenting as a sharp increase in latency.

Therefore, by examining tail latencies, we can see the effect

that different techniques have on reducing stragglers.

As Figure 4c shows, intelligently selecting chunk accesses

(EC+C) reduces the percentage of requests that experience

the straggler effect compared to baseline erasure coding (EC).

Data movement in addition to data access strategies (EC+C+M)

mitigate the effects of stragglers further. Data movement is

effective because it reduces the number of sites needed for

access, and helps balance load. Although late binding (EC+LB)

also reduces the effects of stragglers, EC+C+M has a lower

99th percentile latency than EC+LB because the extra requests

made by late binding place additional load on the storage sites.

We further examine the effects of load in the next section.

2) Effect on Load
Figure 4d shows the average amount of data that is read

per second from each site during the experiment. While a

decrease in latency increases throughput, it causes more data to
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be read, which does not always improve performance. For late

binding (EC+LB), the additional requests result in more data

being read than with our data access and movement techniques

(EC+C+M) while EC+C+M has lower data retrieval times. Late

binding’s increase in the amount of data read is the result of

making δ extra chunk requests when retrieving a block, not

from performing more block reads than EC+C+M.

Our techniques help reduce the load imbalance experienced

in erasure-coded systems. To demonstrate this effect, we define

I/O load to be the amount of data read per site, and compare

the I/O load imbalance factor λ for each configuration in

Table II.5 As shown, our data access strategy (EC+C) reduces

load imbalance compared to both baseline erasure coding and

replication. This improvement is due to our cost model that

considers site load through the oj parameter. Intuitively, our

cost model creates a feedback loop: lightly loaded sites are

preferred for access over heavily loaded sites, so load shifts

from heavily loaded sites to lightly loaded sites to reach a

steady state of balanced load. Actively moving data (EC+C+M)

and considering load when doing so further improves load

balance. Late binding can improve load balance [38], and our

techniques provide similar levels of balance. However, late

binding makes extra requests that increase system load while

our techniques place minimal additional load on the system

(Section VI-C5), achieving load balance through load-aware

data movement and access strategies.

3) Block Size
We also experimented with varying block sizes, both smaller

(10 KB) and larger (1 MB), and have observed similar

trends in performance as previously described. We show the

breakdown of response times for our experiment with 1 MB

blocks in Figure 4e. In this experiment, we found that EC+C+M
techniques reduced data retrieval latency by a greater margin

(nearly 50% over EC, 27% over R, and 21% over EC+LB)

than with the smaller block size of 100 KB. The reduction is

greater because large blocks are more expensive to retrieve and

therefore magnify the effects of load imbalance, and stragglers,

that our techniques mitigate. The time taken to generate an

access strategy for our techniques (EC+C and EC+C+M) is the

same as for replication and erasure coding irrespective of block

size. This indicates that our mechanisms for fast access plan

generation using the plan cache, which had a 90% hit rate, and

a greedy solution on cache miss, are effective in minimizing

the latency overhead of the ILP solver. These results confirm

that our techniques are effective over a range of block sizes.

4) Fault Tolerance
To show that our techniques are robust in the presence of

failures, we performed our 100 KB YCSB experiments when

some nodes were unavailable. To do so, we purposefully failed

the storage service on n nodes chosen at random, but did

not trigger reconstruction of unavailable data. Consequently,

requests to unavailable nodes fail and when the failure is

5λ = (
Lmax−Lavg∗

Lavg∗ ) ∗ 100, where the load on the maximally loaded site

is denoted by Lmax and the average load by Lavg∗ [38].

Resource Usage Statistics Chunk Read Optimizer Chunk Mover
Memory 2.8 GB 10.5 MB 80 MB
CPU <0.5% 0.5% 15%
Network 20 KB/s <1 KB/s 500 KB/s

TABLE III: Physical resources used by EC-Store.

detected, requests are routed to only the available nodes. In

Figure 4f, we present the average response times for requests

after 1 or 2 nodes have failed. Compared to when there are

no failures (Figures 4a and 4b), the average response time

increases by about 1 ms and 5 ms for all systems when

there are 1 and 2 node failures, respectively. Unlike the 1

node failure, when 2 nodes fail some blocks will have chunks

located on both of the failed nodes, causing our data access

strategy (EC+C) to formulate a data access plan in which the

remaining available 2 chunks must be retrieved. However, as

our strategy considers the cost of accessing a site, the access

plans for the remaining blocks can adapt as site load increases.

As our data movement strategy (EC+C+M) moves chunks to

help balance overall system load, the relative performance

improvements persist when failures occur.

5) Resource Consumption
Table III summarizes the physical resources used by the

chunk placement service (chunk read optimizer and chunk

mover) and the statistics service during a YCSB experiment

with 1 million 1-megabyte blocks. The chunk placement

service uses resources to generate background access plans,

manage the plan cache, and to create and cost movement plans.

For these components, the resource usage scales with the num-

ber of blocks accessed in a request, which is generally small,

(e.g. 10 [21,31,39]) and the number of blocks considered for

movement, which our movement heuristics limit.

The statistics service uses memory exclusively to track

access patterns. As more blocks are stored, the relative amount

of space needed for the statistics service decreases because

there is a long tail of blocks that are infrequently accessed, that

therefore require little space for tracking access correlations.

However, if there is a uniform distribution of block accesses

then the space required for tracking access correlations can

increase substantially. Overall, to provide dynamic data access

and movement strategies, EC-Store used only an additional

0.3% of the space needed to store data.

The network overhead of our techniques is also minimal.

We limit the chunk mover to moving less than one chunk

per second, so the data transfer necessary for dynamic data

movement is less than 1 additional block request every second.

Consequently, EC-Store incurs a network overhead of less than

0.1% compared to the total data transferred during the bench-

mark. Comparatively, late binding adds an additional chunk

request to every data item access (50% more chunk requests

in our experiments). These results show our techniques use

meager resources to achieve large performance gains.

6) Wikipedia Results
We performed experiments using the Wikipedia image ac-

cesses as described in Section VI-B, and show average re-

sponse times in Figure 4g. The figure shows that our dynamic
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data movement and access strategies (EC+C+M) significantly

reduce the time taken to retrieve data: over erasure coding (EC)

by 40%, replication (R) by 20%, and late binding (EC+LB)

by 17%. Our techniques achieve these improvements without

making extra requests that late binding generates, storing 50%

less data than replication, and using little additional resources

(Table III). The results show that our intelligent data access

strategy (EC+C) provides about half of the overall reduction

in latency. As with the YCSB experiments, when late binding

is combined with our approach (EC+C+M+LB), data retrieval

times are reduced by an additional 15%.

Figure 4h shows a tail latency (CDF) graph for the

Wikipedia experiments. Unlike the YCSB experiment (Fig-

ure 4c), the Wikipedia graph is smoother in appearance and

lacks the sharp increase in latency that occurs from stragglers.

This difference is due to the distribution in block sizes

that appear in the Wikipedia workload but not the YCSB

workload. As Section VI-C3 noted, the time taken to retrieve

data increases as block size increases. Therefore, a straggling

request for small chunks can have the same retrieval latency

as a straggler-free request for large chunks. This property

makes the effects of stragglers less prominent in a single CDF.

We observe that EC+C+M and EC+C+M+LB have the lowest

latencies for the entire distribution of requests, and it is only

at the extreme tail that late binding (EC+LB) has comparable

latency to EC+C+M. These improvements are possible due to

our techniques providing a size-aware access and movement

strategy to ensure that load remains balanced in the presence

of varying I/O costs for different requests.

VII. RELATED WORK

Erasure-coded storage is popularly used by industrial com-

panies that have designed large-scale (distributed) storage

systems [11,15,30,32]. Some systems [43,56,57] have used

erasure coding to build highly available key-value stores. EC-

Store’s distributed architecture is motivated by these systems,

but differs in its dynamic data access and placement strategies.

To avoid the straggling chunks problem, several systems use

a late binding strategy [19,38,49]. Our work demonstrates that

dynamic data movement as well as dynamic access strategies,

in addition to being complementary to late binding, can

provide performance gains over late binding.

To reduce the overhead of encoding, researchers have de-

signed new erasure codes [19,22,36,37,42,48] or exploited

their algebraic properties [29]. These approaches do not ad-

dress strategies for placement and access of encoded data.

Theoretical work has examined bounds on latency in erasure-

coded storage systems [2,6,41,55]. Instead of a single static

placement policy, our work contributes algorithms for dynamic

data movement and placement including a practical system

using these strategies. This design allows EC-Store to adapt

to changing workloads and access patterns.

Data access and placement strategies have been proposed

for replicated data [8,17,20,33,35,39,46] but they cannot be

used for erasure coded systems as they rely on the assumption

that a complete copy of every data item is accessible at a

single storage site, which does not hold for encoded data. EC-

Store builds upon the ideas of these systems by tracking access

history, co-locating data, and dynamically moving data. EC-

Store offers erasure-coded storage systems a holistic approach

for data access, placement, and movement by incorporating

system load, block access patterns, and access frequency into

its strategies. In contrast, WPS [50] makes data placement

decisions using only chunk access frequency statistics, and

does not specify strategies for data access.
The Triones [45] tool proposes to place encoded chunks

across data centers to provide availability in the presence of

entire data center failures. Triones considers the monetary cost

of data access and storage as the primary objective for static

data placement while EC-Store dynamically optimizes for data

access latencies within storage nodes in a data center.
There has been work that focuses on repair performance by

clustering anti-correlated blocks [18,58]. In these approaches,

an original copy of data is kept at one site and erasure-

coded chunks at other sites for fault tolerance. These encoded

chunks are accessed for repair only if the original data copy is

unavailable, unlike in EC-Store where encoded data is always

accessed. These systems offer access strategies but do not

perform dynamic data movement like EC-Store.
Encoding-aware replication [27] supports both encoded and

replicated data to decrease chunk access times. Other sys-

tems [3,13,16] improve response times by caching chunks or

complete copies of data. These approaches increase storage

overheads and do not lower response times more than replica-

tion, unless the copies are stored on faster storage media. EC-

Store outperforms replication without increasing the storage

overhead of erasure coding. Other work [25,54] focuses on

choosing erasure coding parameters that minimize response

times for hot data items at the cost of increased storage

overheads by decreasing or increasing k. As described in

Section V-B3, EC-Store targets performance improvements of

erasure coded storage regardless of choices for k and r.

VIII. CONCLUSION

We presented EC-Store, a distributed erasure-coded stor-

age system that is designed for dynamic data access and

movement. Our optimization-driven approach allows for data

accesses that minimize response times. By considering access

patterns, EC-Store improves the distribution of load within

the system and supports efficient retrieval by co-locating

frequently accessed data items. EC-Store reduces the average

time to retrieve data by nearly 50% when compared to standard

erasure coding techniques, and 30% compared to replication.

EC-Store improves the state-of-the-art in storage systems

by incorporating the best of both erasure-coded storage and

replication to provide fault tolerance, low latency data access

and low overhead storage.
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