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Abstract
This paper considers enumerating answers to similarity-join queries under dynamic updates: Given
two sets of n points A, B in Rd, a metric ϕ(·), and a distance threshold r > 0, report all pairs of
points (a, b) ∈ A × B with ϕ(a, b) ≤ r. Our goal is to store A, B into a dynamic data structure
that, whenever asked, can enumerate all result pairs with worst-case delay guarantee, i.e., the time
between enumerating two consecutive pairs is bounded. Furthermore, the data structure can be
efficiently updated when a point is inserted into or deleted from A or B.

We propose several efficient data structures for answering similarity-join queries in low dimension.
For exact enumeration of similarity join, we present near-linear-size data structures for ℓ1, ℓ∞ metrics
with logO(1) n update time and delay. We show that such a data structure is not feasible for the
ℓ2 metric for d ≥ 4. For approximate enumeration of similarity join, where the distance threshold
is a soft constraint, we obtain a unified linear-size data structure for ℓp metric, with logO(1) n

delay and update time. In high dimensions, we present an efficient data structure with worst-case
delay-guarantee using locality sensitive hashing (LSH).
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1 Introduction

There has been extensive work in many areas including theoretical computer science, compu-
tational geometry, and database systems on designing efficient dynamic data structures to
store a set O of objects so that certain queries on O can be answered quickly and objects can
be inserted into or deleted from O dynamically. A query Q is specified by a set of constraints
and the goal is to report the subset Q(O) ⊆ O of objects that satisfy the constraints, the
so-called reporting or enumeration queries. More generally, Q may be specified on k-tuples
of objects in O, and we return the subset of Ok that satisfy Q. One may also ask to return
certain statistics on Q(O) instead of Q(O) itself, but here we focus on enumeration queries.
As an example, O is set of points in Rd and a query Q specifies a simple geometric region ∆
(e.g., box, ball, simplex) and asks to return O ∩∆, the so-called range-reporting problem. As
another example, O is again a set of points in Rd, and Q now specifies a value r ≥ 0 and
asks to return all pairs (p, q) ∈ O ×O with ∥p− q∥ ≤ r. Traditionally, the performance of a
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11:2 Dynamic Enumeration of Similarity Joins

data structure has been measured by its size, the time needed to update the data structure
when an object is inserted or deleted, and the total time spent in reporting Q(O). In some
applications, especially in exploratory or interactive data analysis of large datasets, it is
desirable to report Q(O) incrementally one result at a time so that users can start exploiting
the first answers while waiting for the remaining ones. To offer guarantees on the regularity
during the enumeration process, we consider an important complexity measure of such data
structures as the maximum delay between the enumeration of two consecutive objects [11].
Formally speaking, δ-delay enumeration requires that the time between the start of the
enumeration process to the first result, the time between any consecutive pair of results, and
the time between the last result and the termination of the enumeration process should all
be at most δ.

In this paper, we are interested in dynamic data structures for (binary) similarity join
queries, which have numerous applications in data cleaning, data integration, collaborative
filtering, etc. Given two sets of points A and B in Rd, a metric ϕ(·), and a distance threshold
r > 0, the similarity join asks to report all pairs of (a, b) ∈ A×B with ϕ(a, b) ≤ r. Similarity
joins have been studied extensively in the database and data mining literature [19, 33, 40,
43, 45], but it is still unclear how to enumerate similarity join results efficiently when the
underlying data is updated. Our goal is to design a dynamic data structure that can be
efficiently updated when an input point is inserted or deleted; and whenever an enumeration
query is issued, all join results can be enumerated from it with worst-case delay guarantee.

1.1 Previous results
We briefly review the previous work on similarity join and related problems. See surveys [8,
10, 44] for more results.

Enumeration for Conjunctive Queries. Conjunctive queries are built upon natural join
(⋊⋉), which is a special case of similarity join with r = 0, i.e., two tuples can be joined if
and only if they have the same value on the join attributes. Enumeration for conjunctive
queries has been extensively studied in the static settings [11, 42, 16] for a long time. In
2017, two papers [14, 31] started to study dynamic enumeration for conjunctive query. Both
obtained a dichotomy. First, a linear-size data structure that can be updated in O(1) time
while supporting O(1)-delay enumeration exists for a conjunctive query if and only if it is
q-hierarchical (e.g., the degenerated natural join over two tables is q-hierarchical). However,
for non-q-hierarchical queries with input size n, they showed a lower bound Ω(n 1

2 −ε) on the
update time for any small constant ε > 0, if aiming at O(1) delay. This result is very negative
since q-hierarchical queries are a very restricted class; for example, the matrix multiplication
query πX,ZR1(X, Y ) ⋊⋉ R2(Y, Z), where πX,Y denotes the projection on attributes X, Y , and
the triangle join R1(X, Y ) ⋊⋉ R2(Y, Z) ⋊⋉ R3(Z, X) are already non-q-hierarchical. Later,
Kara et al. [34] designed optimal data structures supporting O(

√
n)-time maintenance for

some selected non-q-hierarchical queries such as the triangle queries. However, it is still
unclear if a data structure of O(

√
n)-time maintenance exists for a large class of queries.

Some additional trade-off results have been obtained in [35, 46].

Range search. A widely studied problem related to similarity join is range searching [2, 3,
13, 47]: Preprocess a set A of points in Rd with a data structure so that for a query range
γ (e.g., rectangle, ball, simplex), all points of A ∩ γ can be reported quickly. A particular
instance of range searching, the so-called fixed-radius-neighbor searching, in which the range
is a ball of fixed radius centered at query point is particularly relevant for similarity joins.
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Table 1 Summary of Results: n is the input size; r is the distance threshold; d is the dimension
of input points; ρ ≤ 1

(1+ε)2 + o(1) is the quality of LSH family for the ℓ2 metric. For ℓ1, Hamming
ρ ≤ 1

1+ε
. Õ notation hides a logO(1) n-factor; for the results where d is constant the O(1) exponent

is at most linear on d, while for the high dimensional case the exponent is at most 3.

Enumeration Metric Properties Data Structures
Space Update Delay

Exact ℓ1/ℓ∞ r is fixed Õ(n) Õ(1) Õ(1)
ℓ2 r is fixed Õ(n) Õ(n1− 1

d+1 ) Õ(n1− 1
d+1 )

ϵ- ℓp

r is fixed O(n) Õ(ϵ−d) Õ(ϵ−d)

Approximate
r is variable

O(ε−dn) Õ(ε−d) O(1)spread is poly(n)
ℓ1, ℓ2, r is fixed

Õ(dn + n1+ρ) Õ(dn2ρ) Õ(dn2ρ)hamming high dimension

For a given metric ϕ, let Bϕ(x, r) be the ball of radius r centered at x. A similarity join
between two sets A, B can be answered by querying A with ranges Bϕ(b, r) for all b ∈ B.
Notwithstanding this close relationship between range searching and similarity join, the data
structures for the former cannot be used for the latter: It is too expensive to query A with
Bϕ(b, r) for every b ∈ B whenever an enumeration query is issued, especially since many
such range queries may return empty set, and it is not clear how to maintain the query
results as the input set A changes dynamically.

Reporting neighbors. The problem of reporting neighbors is identical to our problem in
the offline setting. In particular, given a set P of n points in Rd and a parameter r, the goal
is to report all pairs of P within distance r. The algorithm proposed in [36] can be modified
to solve the problem of reporting neighbors under the ℓ∞ metric in O(n + k) time, where k

is the output size. Aiger et al. [7] proposed randomized algorithms for reporting neighbors
using the ℓ2 metric in O((n + k) log n) time, for constant d.

Scalable continuous query processing. There has been some work on scalable continuous
query processing, especially in the context of data streams [21, 18, 49] and publish/sub-
scribe [25], where the queries are standing queries and whenever a new data item arrives,
the goal is to report all queries that are affected by the new item [6, 5]. In the context of
similarity join, one can view A as the data stream and Bϕ(b, r) as standing queries, and
we update the results of queries as new points in A arrive. There are, however, significant
differences with similarity joins – arbitrary deletions are not handled; continuous queries do
not need to return previously produced results; basing enumeration queries on a solution
for continuous queries would require accessing previous results, which can be prohibitive if
stored explicitly.

1.2 Our results
We present several dynamic data structures for enumerating similarity joins under different
metrics. Table 1 summarizes our main results. It turns out that dynamic similarity join
is hard for some metrics, e.g., ℓ2. Therefore we also consider approximate similarity join
where the distance threshold r is a soft constraint. Formally, given parameter r, ε > 0, the
ε-approximate similarity join relaxes the distance threshold: (1) all pairs of (a, b) ∈ A×B

with ϕ(a, b) ≤ r should be returned; (2) no pair of (a, b) ∈ A×B with ϕ(a, b) > (1 + ε)r is
returned; (3) some pairs of (a, b) ∈ A×B with r < ϕ(a, b) ≤ (1 + ε)r may be returned. We
classify our results in four broad categories:
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11:4 Dynamic Enumeration of Similarity Joins

Exact similarity join. Here we assume that d is constant and the distance threshold is
fixed. Our first result (Section 2.1) is an Õ(1)-size data structure for similarity join under
the ℓ1/ℓ∞ metrics that can be updated in Õ(1) time whenever A or B is updated, and
ensures Õ(1) delay during enumeration. Based on range trees [12, 23], the data structure
stores the similarity join pairs implicitly so that they can be enumerated without probing
every input point. We extend these ideas to construct a data structure for similarity join
under the ℓ2 metric (in Section 2.3) with Õ(n1−1/d) amortized update time while supporting
Õ(n1−1/d)-delay enumeration. Lower bounds on ball range searching [1, 20] rule out the
possibility of a linear-size data structure with Õ(1) delay.

Approximate similarity join in low dimensions. Due to the negative result for ℓ2 metric,
we shift our attention to ε-approximate similarity join. We now allow the distance threshold
to be part of the query, but the value of ε, the error parameter, is fixed. We present a
simple linear-size data structure based on quad trees and the notion of well-separated pair
decomposition, with O(ϵ−d) update time and O(1) delay. If we fix the distance threshold,
then the data structure can be further simplified and somewhat improved by replacing the
quad tree with a simple uniform grid.

Approximate similarity join in high dimensions. So far we assumed d to be constant and
the big O notation in some of the previous bounds hides a constant that is exponential in d.
Our final result is an LSH-based [27] data structure for similarity joins in high dimensions.
Two technical issues arise when enumerating join results from LSH: one is to ensure bounded
delay because we do not want to enumerate false positive results identified by the hash
functions, and the other is to remove duplicated results as one join result could be identified
by multiple hash functions. For the ℓ2 metric (the results can also be extended to ℓ1 and
Hamming metrics) we propose a data structure of Õ(nd + n1+ρ) size and Õ(dn2ρ) amortized
update time that supports (1 + 2ε)-approximate enumeration with Õ(dn2ρ) delay with high
probability, where ρ ≤ 1

(1+ε)2 + o(1) is the quality of the LSH family. Alternatively, we
present a data structure with Õ(dnρ) amortized update time and Õ(dn3ρ) delay. Our data
structure can be extended to the case when the distance threshold r is variable. If we allow
worse approximation error we can improve the results for the Hamming distance. Finally, we
show a lower bound by relating similarity join to the approximate nearest neighbor query.

We also consider similarity join beyond binary joins.

Triangle similarity join in low dimensions. Given three sets of points A, B, S in Rd, a metric
ϕ(·), and a distance threshold r > 0, the triangle similarity join asks to report the set of all
triples of (a, b, s) ∈ A× B × S with ϕ(a, b) ≤ r, ϕ(a, s) ≤ r, ϕ(b, s) ≤ r. The ε-approximate
triangle similarity join can be defined similarly by taking the distance threshold r as a soft
constraint. In the full version [4], we extend our data structures to approximate triangle
similarity join by paying an extra factor of logO(1) n in the performance.

High-level framework. All our data structures rely on the following common framework.
We model the (binary) similarity join as a bipartite graph G′ = (A ∪ B, E), where an
edge (a, b) ∈ E if and only if ϕ(a, b) ≤ r. A naive solution by maintaining all edges of
G′ explicitly leads to a data structure of Θ(n2) size that can be updated in Θ(n) time
while supporting O(1)-delay enumeration. To obtain a data structure with poly-logarithmic
update time and delay enumeration, we find a compact representation of G′ with a set
F = {(A1, B1), (A2, B2), . . . , (Au, Bu)} of edge-disjoint bi-cliques such that (i) Ai ⊆ A,
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Bi ⊆ B for any i, (ii) E =
⋃u

i=1 Ai ×Bi, and (iii) (Ai ×Bi) ∩ (Aj ×Bj) = ∅ for any i ̸= j.
We represent F using a tripartite graph G = (A ∪B ∪ C, E1 ∪ E2) where C = {c1, . . . , cu}
has a node for each bi-clique in F and for every i ≤ u, we have the edges (aj , ci) ∈ E1
for all aj ∈ Ai and (bk, ci) ∈ E1 for all bk ∈ Bi. We cannot afford to maintain E1 and E2
explicitly. Instead, we store some auxiliary information for each ci and use geometric data
structures to recover the edges incident to a vertex ci ∈ C. We also use data structures
to maintain the set C and the auxiliary information dynamically as A and B are being
updated. We will not refer to this framework explicitly but it provides the intuition behind
all our data structures. Section 2 describes the data structures to support this framework for
exact similarity join, and Section 3 presents simpler, faster data structures for approximate
similarity join. Both Sections 2 and 3 assume d to be constant. Section 4 describes the data
structure for approximate similarity join when d is not constant.

2 Exact Similarity Join

In this section, we describe the data structure for exact similarity joins under the ℓ∞, ℓ1, ℓ2
metrics, assuming d is constant. We first describe the data structure for the ℓ∞ metric. We
show that similarity join under the ℓ1 metric in Rd can be reduced to that under the ℓ∞
metric in Rd+1. Finally, we describe the data structure for the ℓ2 metric. Throughout this
section, the threshold r is fixed, which is assumed to be 1 without loss of generality.

2.1 Similarity join under ℓ∞ metric
Let A and B be two point sets in Rd with |A| + |B| = n. For a point p ∈ Rd, let
B(p) = {x ∈ Rd | ∥p− x∥∞ ≤ 1} be the hypercube of side length 2. We wish to enumerate
pairs (a, b) ∈ A×B such that a ∈ B(b).

Data structure. We build a d-dimensional dynamic range tree T on the points in A. For
d = 1, the range tree on A is a balanced binary search tree T of O(log n) height. The points
of A are stored at the leaves of T in increasing order, while each internal node v stores the
smallest and the largest values, α−

v and α+
v , respectively, contained in its subtree. The node

v is associated with an interval Iv = [α−
v , α+

v ] and the subset Av = Iv ∩A. For d > 1, T is
constructed recursively: We build a 1D range tree Td on the xd-coordinates of points in A.
Next, for each node v ∈ Td, we recursively construct a (d− 1)-dimensional range tree Tv on
A∗

v, which is defined as the projection of Av onto the hyperplane xd = 0, and attach Tv to
v as its secondary tree. The size of T in Rd is O(n logd−1 n) and it can be constructed in
O(n logd n) time. See [23] for details.

For a node v at a level-i tree, let p(v) denote its parents in that tree. If v is the root of
that tree, p(v) is undefined. For each node u of the d-th level of T , we associate a d-tuple
π(u) = ⟨u1, u2, . . . , ud = u⟩, where ui is the node at the i-th level tree of T to which the
level-(i + 1) tree containing ui+1 is connected. We associate the rectangle □u =

∏d
j=1 Iuj

with the node u. For a rectangle ρ =
∏d

i=1 δi , a d-level node u is called a canonical node
if for every i ∈ [1, d], Iui ⊆ δi and Ip(ui) ̸⊆ δi. For any rectangle ρ, there are O(logd n)
canonical nodes in T , denoted by N (ρ), and they can be computed in O(logd n) time [23].
T can be maintained dynamically, as points are inserted into A or deleted from A using
the standard partial-reconstruction method, which periodically reconstructs various bottom
subtrees. The amortized time is O(logd n); see [39] for details.

We query T with B(b) for all b ∈ B and compute N (b) := N (B(b)) the sets of its
canonical nodes. For each level-d tree node u of T , let Bu = {b ∈ B | u ∈ N (b)}. We have∑

u |Bu| = O(n logd n). By construction, for all pairs (a, b) ∈ Au × Bu, ∥a− b∥∞ ≤ 1, so

ICALP 2021



11:6 Dynamic Enumeration of Similarity Joins

Figure 1 Left: Two levels of the range tree. Right: Definition of R(u).

(Au, Bu) is a bi-clique of join results. We call u active if both Au, Bu ≠ ∅. A naive approach
for reporting join results is to maintain Au, Bu for every d-level node u of T as well as
the set C of all active nodes. Whenever an enumerate query is issued, we traverse C and
return Au × Bu for all u ∈ C (referring to the tripartite-graph framework mentioned in
Introduction, C is the set of all level-d nodes of T ). The difficulty with this approach is that
when A changes and T is updated, some d-level nodes change and we have to construct Bu

for each new level-d node u ∈ T . It is too expensive to scan the entire B at each update.
Furthermore, although the average size of Bu is small, it can be very large for a particular
u and this node may appear and disappear several times. So we need a different approach.
The following lemma is the key observation.

▶ Lemma 1. Let u be a level-d node, and let π(u) = ⟨u1, . . . , ud = u⟩. Then there is a
d-dimensional rectangle R(u) =

∏d
i=1 δi, where the endpoints of δi, for i ∈ [1, d], are defined

by the endpoints of Iui
and Ip(ui), such that for any x ∈ Rd, u ∈ N (x) if and only if

x ∈ R(u). Given ui’s and p(ui)’s, R(u) can be constructed in O(1) time.

Proof. Notice that B(x) is the hypercube of side length 2 and center x. Let Iui
= [α−

ui
, α+

ui
]

for any ui and i ∈ [1, d]. Recall that u ∈ N (x) if and only if for each i ∈ [1, d],

Iui ⊆ [xi − 1, xi + 1] and Ip(ui) ̸⊆ [xi − 1, xi + 1], (∗)

Fix a value of i. From the construction of a range tree either α−
ui

= α−
p(ui) or α+

ui
= α+

p(ui).
Without loss of generality, assume α−

ui
= α−

p(ui); the other case is symmetric. Then (∗) can
be written as: xi ≤ α−

ui
+ 1 and α+

ui
− 1 ≤ xi < α+

p(ui) − 1. Therefore xi has to satisfy three
1D linear constraints. The feasible region of these constraints is an interval δi and xi ∈ δi

(see also Figure 1). Hence, u is a canonical node of B(x) if and only if for all i ∈ [1, d],
xi ∈ δi. In other words, x = (x1, . . . , xd) ∈

∏d
i=1 δi := R(u). The endpoints of δi are the

endpoints of Iui
or Ip(ui). In order to construct R(u), we only need the intervals Iui

and
Ip(ui) for each i ∈ [1, d], so it can be constructed in O(d) = O(1) time. ◀

In view of Lemma 1, we proceed as follows. We build a dynamic range tree Z on B.
Furthermore, we augment the range tree T on A as follows. For each level-d node u ∈ T , we
compute and store R(u) and βu = |Bu|. By construction, |Au| ≥ 1 for all u. We also store a
pointer at u to the leftmost leaf of the subtree of T rooted at u, and we thread all the leaves
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of a d-level tree so that for a node u, Au can be reported in O(|Au|) time. Updating these
pointers as T is updated is straightforward. Whenever a new node u of T is constructed,
we query Z with R(u) to compute βu. Finally, we store C , the set of all active nodes of T ,
in a red-black tree so that a node can be inserted or deleted in O(log n) time. The total size
of the data structure is O(n logd−1 n), and it can be constructed in O(n logd n) time.

Update and Enumerate. Updating A is straightforward. We update T , query Z with
R(u), for all newly created d-level nodes u in T to compute βu, and update C to delete all
active nodes that are no longer in T and to insert new active nodes. Since the amortized
time to update T as a point is inserted or deleted is O(logd n), the amortized update time of
a point in A is O(log2d n) – we spend O(logd n) time to compute βu for each of the O(logd n)
newly created nodes. If a point b is inserted (resp. deleted) in B, we update Z and query
T with B(b). For all canonical nodes u in N (b), we increment (resp. decrement) bu. If
u becomes active (resp. inactive), we insert (resp. delete) u in C in O(log n) time. The
amortized update time for b is O(logd+1 n).

Finally, to enumerate the pairs in join results, we traverse the active nodes C and for
each u ∈ C , we first query Z with R(u) to recover Bu. Recall that Bu is reported as a set
of O(logd n) canonical nodes of Z whose leaves contain the points of Bu. We simultaneously
traverse the leaves of the subtree of T rooted at u to compute Au and report Au ×Bu. The
traversals can be performed in O(logd n) maximum delay. Putting everything together, we
obtain:

▶ Theorem 2. Let A, B be two sets of points in Rd, where d ≥ 1 is a constant, with
|A|+ |B| = n. A data structure of Õ(n) size can be built in Õ(n) time and updated in Õ(1)
amortized time, while supporting Õ(1)-delay enumeration of similarity join under ℓ∞ metric.

2.2 Similarity join under ℓ1 metric
For d ≤ 2 it is straightforward to reduce similarity join under ℓ1 metric to ℓ∞ metric. For
d = 1, ℓ1 metric is obviously equivalent to the ℓ∞ metric. For d = 2, notice that the ℓ1 ball
is a diamond, while the ℓ∞ ball is a square. Hence, given an instance of the similarity join
under the ℓ1 metric we can rotate A ∪B by 45 degrees to create an equivalent instance of
the similarity join problem under the ℓ∞ metric.

Next, we focus on d ≥ 3. The data structure we proposed in Section 2.1 for the ℓ∞
norm can be straightforwardly extended to the rectangle-containment problem in which for
each b ∈ B, B(b) is an arbitrary axis-aligned hyper-rectangle with center b, and the goal
is to report all (a, b) ∈ A×B such that a ∈ B(b). Lemma 1 can be extended so that R(u)
is a 2d-dimensional rectangle. Overall, Theorem 2 remains the same assuming B(b) are
hyper-rectangles (and not hypercubes).

Given an instance of similarity join under ℓ1 metric in Rd, we next show how to reduce it to
2d (d + 1)-dimensional rectangle-containment problems. As above, assume r = 1, so our goal
is to report all pairs a = (a1, . . . , ad) ∈ A, b = (b1, . . . , bd) ∈ B such that

∑d
i=1 |ai − bi| ≤ 1.

Let E = {−1, +1}d be the set of all 2d vectors in Rd with coordinates either 1 or −1.
For each vector e ∈ E, we construct an instance of the rectangle-containment problem.
For each e = (e1, . . . , ed) ∈ E, we map each point a = (a1, . . . , ad) ∈ A to a point āe =
(a1, . . . , ad,

∑d
i=1 eiai) ∈ Rd+1. Let Āe = {āe | a ∈ A}. For each point b = (b1, . . . , bd) ∈ B,

we construct the axis-align rectangle b̄e =
∏d+1

i=1 b
(i)
e in Rd+1, where b

(i)
e is the interval [bi,∞)

if ei = 1 and (−∞, bi] if ei = −1 for each i = 1, . . . , d, and b
(d+1)
e = (−∞, 1 +

∑d
i=1 eibi]. Let

B̄e = {b̄e | b ∈ B}. See Figure 2.
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e = (+1,+1) e = (−1,+1) e = (+1,−1) e = (−1,−1)

b

a
(b1, b2, 1 − b1 − b2)

(b1, b2, 1 + b1 − b2)

(b1, b2, 1 − b1 + b2)(b1, b2, 1 + b1 + b2)

āe

Figure 2 An illustration of mapping each b to rectangles.

For each e ∈ E, we construct the dynamic data structure for Āe, B̄e. Whenever A or
B is updated, we update all 2d rectangle-containment data structures. A similarity join
enumeration query on A, B is answered by enumerating containment pairs (Āe, B̄e) for e ∈ E.
If a pair (āe, b̄e) is reported, we report (a, b). The update time and delay are Õ(1). The
correctness of the algorithm follows from the following lemma. Let sgn(x) = +1 if x ≥ 0 and
−1 otherwise.

▶ Lemma 3. Let a = (a1, . . . , ad) ∈ A, b = (b1, . . . , bd) ∈ B be an arbitrary pair of points.
Let e∗ = (e∗

1, . . . , e∗
d) where e∗

i = sgn(ai− bi) for 1 ≤ i ≤ d. Then āe /∈ b̄e for all e ∈ E \ {e∗}.
Furthermore, āe∗ ∈ b̄e∗ if and only if ∥a− b∥1 ≤ 1.

Proof. First, we note that for any e ∈ E \ {e∗}, there must exist some i such that ei ̸= e∗
i .

Without loss of generality, assume ej = 1 when aj < bj . By the definition of āe, b̄e,
aj /∈ [bj ,∞), thus āe /∈ b̄e. Next, we show that āe∗ ∈ b̄e∗ if and only if ∥a − b∥1 ≤ 1. On
one hand, we assume āe∗ ∈ b̄e∗ . By definition,

∑d
i=1 e∗

i ai lies in the interval associated with
bd+1

e∗ , i.e.,
∑d

i=1 e∗
i ai ≤ 1 +

∑d
i=1 e∗

i bi, or
∑d

i=1 e∗
i (ai − bi) ≤ 1. Implied by the fact that

∥a− b∥1 =
∑d

i=1 e∗
i (ai − bi), we have ∥a− b∥1 ≤ 1. On the other hand, assume ∥a− b∥1 ≤ 1.

Similarly, we have ∥a − b∥1 =
∑d

i=1 e∗
i (ai − bi) ≤ 1 ⇔

∑d
i=1 e∗

i ai ≤ 1 +
∑d

i=1 e∗
i bi, or∑d

i=1 e∗
i ai ∈ (−∞, 1 +

∑d
i=1 e∗

i bi]. Moreover, for any i ∈ {1, . . . , d}, we have: (1) if e∗
i = 1,

ai ≥ bi, i.e., ai ∈ [bi,∞); (2) if e∗
i = −1, ai ≤ bi, i.e., ai ∈ (−∞, bi]. Hence, āe∗ ∈ b̄e∗ . ◀

b

Figure 3 An illustration of ℓ1 ball in R3. It is decomposed to 2d = 8 types of simplices.

▶ Remark. Roughly speaking, we partition the ℓ1-ball centered at 0 into 2d simplices
∆1, . . . , ∆2d (see Figure 3) and build a separate data structure for each simplex ∆i. Namely,
let Bi = {b + ∆i | b ∈ B} and we report all pairs (a, b) ∈ A × B such that a ∈ b + ∆i. If
∥a− b∥1 ≤ 1 then a lies in exactly one simplex b ∈ ∆i. We map each simplex to a rectangle
in Rd+1 and use the previous data structure.

Using Theorem 2, we obtain:

▶ Theorem 4. Let A, B be two sets of points in Rd, where d ≥ 1 is a constant, with
|A|+ |B| = n. A data structure of Õ(n) size can be built in Õ(n) time and updated in Õ(1)
amortized time, while supporting Õ(1)-delay enumeration of similarity join under ℓ1 metric.
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2.3 Similarity join under ℓ2 metric
In this section, we consider the similarity join between two point sets A and B in Rd under
the ℓ2 metric.

Reduction to halfspace containment. We use the lifting transformation [23] to convert an
instance of the similarity join problem under ℓ2 metric to the halfspace-containment problem
in Rd+1. For any two points a = (a1, . . . , ad) ∈ A and b = (b1, . . . , bd) ∈ B, ∥a− b∥2 ≤ 1 if
and only if (a1 − b1)2 + . . . + (ad − bd)2 ≤ 1, or a lies in the unit sphere centered at b. The
above condition can be rewritten as

a2
1 + b2

1 + · · ·+ a2
d + b2

d − 2a1b1 − · · · − 2adbd − 1 ≥ 0.

We map the point a to a point a′ = (a1, . . . , ad, a2
1 + · · ·+ a2

d) in Rd+1 and the point b to a
halfspace b′ in Rd+1 defined as

b′ : −2b1z1 − · · · − 2bdzd + zd+1 + b2
1 + · · ·+ b2

d − 1 ≥ 0.

Note that ∥a − b∥2 ≤ 1 if and only if a′ ∈ b′. Set A′ = {a′ | a ∈ A} and B′ = {b′ | b ∈ B}.
Thus, in the following, we study the halfspace-containment problem, where given a set of
points A′ and a set of halfspaces B′ we construct a dynamic data structure that reports all
pairs (a ∈ A′, b ∈ B′), such that a belongs in the halfspace b, with delay guarantee.

Partition tree. A partition tree on a set P of points in Rd [17, 37, 48] is a tree data structure
formed by recursively partitioning a set into subsets. Each point is stored in exactly one
leaf and each leaf usually contains a constant number of points. Each node u of the tree
is associated with a simplex ∆u and the subset Pu = P ∩∆u; the subtree rooted at u is a
partition tree of Pu. We assume that the simplices associated with the children of a node u

are pairwise disjoint and lie inside ∆u, as in [17]. In general, the degree of a node is allowed
to be non-constant. Given a query simplex ∆, a partition tree finds a set of O(n1−1/d)
canonical nodes whose cells contain the points of P ∩∆. Roughly speaking, a node u is a
canonical node for ∆ if ∆u ⊂ ∆ and ∆p(u) ̸⊆ ∆. A simplex counting (resp. reporting) query
can be answered in O(n1−1/d) (resp. O(n1−1/d + k)) time using a partition tree. Chan [17]
proposed a randomized algorithm for constructing a linear size partition tree with constant
degree, that runs in O(n log n) time and it has O(n1−1/d) query time with high probability.

Data structure. For simplicity, with slight abuse of notation, let A be a set of points
in Rd and B a set of halfspaces in Rd each lying below the hyperplane bounding it, and
our goal is to build a dynamic data structure for halfspace-containment join on A, B. The
overall structure of the data structure is the same as for rectangle containment described in
Section 2.1, so we simply highlight the difference.

Instead of constructing a range tree, we construct a dynamic partition tree TA for A

so that the points of A lying in a halfspace can be represented as the union of O(n1−1/d)
canonical subsets. For a halfplane bounding a halfspace b ∈ B, let b̄ denote its dual point
in Rd (see [23] for the definition of duality transform). Note that a point a lies in b if and
only if the dual point b̄ lies in the halfspace lying below the hyperplane dual to a. Set
B̄ = {b̄ | b ∈ B}. We construct a multi-level dynamic partition tree on B̄, so that for a pair
of simplices ∆1 and ∆2, it returns the number of halfspaces of B that satisfy the following
two conditions: (i) ∆1 ⊆ b and (ii) ∆2 ∩∂b ̸= ∅, where ∂b is the hyperplane boundary defined
by the halfspace b. This data structure uses O(n) space, can be constructed in Õ(n) time,
and answers a query in Õ(n1−1/d) time.
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For each node u ∈ TA, we issue a counting query to TB and get the number of halfspaces
in B that have u as a canonical node. Hence, TA can be built in Õ(n2−1/d) time. For a
node u, µA(u) can be computed in O(1) time by storing Au at each node u ∈ TA. Recall
that µB(u) is the number of halfspaces b of B for which u is a canonical node, i.e., ∆u ⊆ b

and ∆p(u) ∩ ∂b ≠ ∅, where p(u) is the parent of u. Using TB, µB(u) can be computed in
Õ(n1−1/d) time.

Update and enumeration. The update procedure is the same that in Section 2.1, however
the query time now on TA or TB is Õ(n1− 1

d ) so the amortized update time is Õ(n1− 1
d ). The

enumeration query is also the same as in Section 2.1 but a reporting query in TB takes
Õ(n1− 1

d + k) time (and it has delay at most Õ(n1− 1
d )), so the overall delay is Õ(n1− 1

d ).

▶ Theorem 5. Let A be a set of points and B be a set of half-spaces in Rd with |A|+ |B| = n.
A data structure of Õ(n) size can be built in Õ(n2− 1

d ) time and updated in Õ(n1− 1
d ) amortized

time while supporting Õ(n1− 1
d )-delay enumeration of halfspace-containment query.

Using Theorem 5 and the lifting transformation described at the beginning of this section
we conclude with Corollary 6.

▶ Corollary 6. Let A, B be two sets of points in Rd, where d ≥ 1 is a constant, with
|A| + |B| = n. A data structure of Õ(n) size can be constructed in Õ(n2− 1

d+1 ) time and
updated in Õ(n1− 1

d+1 ) amortized time, while supporting Õ(n1− 1
d+1 )-delay enumeration of

similarity join under the ℓ2 metric.

Lower bound. We show a lower bound for the similarity join in the pointer-machine model
under the ℓ2 metric based on the hardness of unit sphere reporting problem. Let P be a set
of n points in Rd for d > 3. The unit-sphere reporting problem asks for a data structure on
the points in P , such that given any unit-sphere b report all points of P ∩ b. If the space is
Õ(n), it is not possible to get a data structure for answering unit-sphere reporting queries in
Õ(k + 1) time in the pointer-machine model, where k is the output size for d ≥ 4 [1].

For any instance of sphere reporting problem, we construct an instance of similarity join
over two sets, with A = ∅, B = P , and r = 1. Given a query unit-sphere of center q, we insert
point q in A, issue an enumeration query, and then remove q from A. All results enumerated
(if any) are the results of the sphere reporting problem. If there exists a data structure for
enumerating similarity join under ℓ2 metric using Õ(n) space, with Õ(1) update time and
Õ(1) delay, we would break the barrier.

▶ Theorem 7. Let A, B be two sets of points in Rd for d > 3, with |A|+ |B| = n. If using
Õ(n) space, there is no data structure under the pointer-machine model that can be updated
in Õ(1) time, while supporting Õ(1)-delay enumeration of similarity join under the ℓ2 metric.

3 Approximate Enumeration

In this section we propose a dynamic data structure for answering approximate similarity-join
queries under any ℓp metric. For simplicity, we use the ℓ2 norm to illustrate the main idea
and assume ϕ(a, b) = ||a− b||2. Recall that all pairs of (a, b) ∈ A×B with ϕ(a, b) ≤ r must
be reported, along with (potentially) some pairs of (a′, b′) with ϕ(a′, b′) ≤ (1 + ε)r, but no
pair (a, b) with ϕ(a, b) > (1 + ε)r is reported.

We will start with the setting where the distance threshold r is not fixed and specified as
part of a query, and then move to a simpler scenario where r is fixed.
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Ai

Bi

≤ εL

≤ εL

L

Figure 4 An example pair of ε-WSPD.

c
points in B
points in A

Figure 5 An example of active cell c in the grid.

3.1 Variable Similarity Threshold
We describe the data structure when r is part of the query. In this subsection we assume that
the spread of A ∪ B is polynomially bounded, i.e., sp(A ∪ B) = maxp,q∈A∪B ϕ(p,q)

minp ̸=q∈A∪B ϕ(p,q) = nO(1).
We use a quad tree and well-separated pair decomposition (WSPD) for our data structure.
We describe them briefly here and refer the reader to [28, 41] for details.

Quad tree and WSPD. A d-dimensional quad tree over a point set P is a tree data structure
T in which each node u is associated with a hypercube □u in Rd, called a cell, and each
internal node has 2d children. The root is associated with a hypercube containing P . For
a node u, let Pu = P ∩□u. A node u is a leaf if |Pu| ≤ 1. The tree recursively subdivides
the space into 2d congruent hypercubes until a box contains at most one point from P . If
sp(P ) = nO(1), the height of T is O(log n).

Given two point sets A, B ⊂ Rd, with |A| + |B| = n, and a parameter 0 < ε < 1
2 ,

a family of pairs W = {(A1, B1), (A2, B2), · · · , (As, Bs)} is an ε-WSPD if the following
conditions hold: (1) for any i ≤ s, Ai ⊆ A, Bi ⊆ B (2) for each pair of points (a, b) ∈
A × B, there exists a unique pair (Aj , Bj) ∈ W such that a ∈ Aj and b ∈ Bj (3) for any
i ≤ s, max{diam(Ai), diam(Bi)} ≤ ε · ϕ(Ai, Bi), where diam(X) = maxx,y∈X ϕ(x, y) and
ϕ(X, Y ) = minx∈X,y∈Y ϕ(x, y) (see Figure 4). As shown in [28, 30] if sp(A ∪B) = nO(1), a
quad tree T on A∪B can be used to construct, in time O(n log n+ε−dn), a WSPD W of size
O(ε−dn) such that each pair (Ai, Bi) ∈ W is associated with pair of cells (□i,⊞i) in T where
Ai = A∩□i and Bi = B∩⊞i. It is also known that for each pair (Ai, Bi) ∈ W (i) □i∩⊞i = ∅,
(ii) max{diam(□i), diam(⊞i)} ≤ εϕ(□i,⊞i), and each cell appears in O(ε−d log n) cells (see
Figure 4). We will use W = {(□1,⊞i), . . . , (□s,⊞s)} to denote the WSPD, with Ai, Bi being
implicitly defined from the cells. Using the techniques in [15, 26], the quad tree T and the
WSPD W can be maintained under insertions and deletions of points in Õ(ε−d) time.

Data structure. We construct a quad tree T on A ∪B. For each node u ∈ T , we store a
pointer Au (and Bu) to the leftmost leaf of subtree Tu that contains a point from A (and
B). Furthermore, we store sorted lists LA and LB of the leaves that contain points from A

and B, respectively. We use these pointers and lists to report points in □u with O(1) delay.
Using T , we can construct a WSPD W = {(□1,⊞1), . . . , (□s,⊞s)}, s = O(ε−d). For each i,
let ∆i = minp∈□i,q∈⊞i

ϕ(p, q). We store all pairs (□i,⊞i) in a red-black tree Z using ∆i as
the key. The data structure has O(ε−dn) size and O(ε−dn log n) construction time.

Update. After inserting or deleting an input point, the quad tree T and W can be updated
in Õ(ε−d) time, following the standard techniques in [15, 26]. As there are at most Õ(ε−d)
pairs changed, we can update the tree Z in Õ(ε−d) time. Furthermore, we note that there
are only O(1) changes in the structure of quad tree T and the height of T is O(log n), so
we can update all necessary pointers Au, Bu and sorted lists LA, LB in O(log n) time.
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Enumeration. Let r be the threshold parameter specified as part of a query. We traverse
the tree Z in order and report pairs of cells until we reach a pair (□j ,⊞j) with ∆j > r. For
each pair (□i,⊞i) reported, we traverse we enumerate (a, b) ∈ (A ∩□i)× (B ∩⊞i) using the
stored pointers and the sorted lists LA, LB . The delay guarantee is O(1).

Let (a, b) ∈ A×B be a pair with ϕ(a, b) ≤ r. Implied by the definition, there exists a unique
pair (Ai, Bi) ∈ W such that a ∈ Ai and b ∈ Bi. Notice that ϕ(□i,⊞i) ≤ ϕ(a, b) ≤ r. Thus, all
results of Ai×Bi will be reported, including (a, b). Next, let (□i,⊞i) be a pair that is reported
by the enumeration procedure in Z , with ϕ(□i,⊞i) ≤ r. For any pair of points x ∈ □i, y ∈ ⊞i,
we have ϕ(x, y) ≤ ϕ(□i,⊞i) + diam(□i) + diam(⊞i) ≤ (1 + 2 · ε

2 ) · ϕ(□i,⊞i) ≤ (1 + ε)r, thus
ϕ(a, b) ≤ (1 + ε)r for any pair (a, b) ∈ Ai ×Bi.

▶ Theorem 8. Let A, B be two sets of points in Rd for constant d, with O(nO(1)) spread and
|A|+ |B| = n. A data structure of O(ε−dn) space can be built in Õ(ε−dn) time and updated
in Õ(ε−d) time, while supporting ε-approximate enumeration for similarity join under any
ℓp metric with O(1) delay, for any query similarity threshold r.

3.2 Fixed distance threshold
Without loss of generality we assume that r = 1. We use a grid-based data structure for
enumerating similarity join with fixed distance threshold r.

Data structure. Let G be an infinite uniform grid1 in Rd, where the size of each grid cell is
ε

2
√

d
and the diameter is ε

2 . For a pair of cells c, c′ ∈, define ϕ(c, c′) = minp∈c,q∈c′ ϕ(p, q). Each
grid cell c ∈ G is associated with (1) Ac = A∩ c; (2) Bc = B ∩ c; (3) mc =

∑
c′:ϕ(c,c′)≤1 |Bc′ |

as the number of points in B that lie in a cell c′ within distance 1 from cell c. Let CNE ⊆ G

be the set of all non-empty cells, CNE = {c ∈ G | Ac ∪Bc ̸= ∅}. A grid cell c ∈ CNE is active
if and only if Ac ̸= ∅ and mc > 0 (see Figure 5 for an example). Let C ⊆ CNE be the set of
active grid cells (Figure 5). Notice that a grid cell is stored when there is at least one point
from A or B lying inside it, so |CNE | ≤ n. Finally, we build a balanced search tree on C so
that whether a cell c is stored in C can be answered in O(log n) time. Similarly, we build
another balanced search tree to store the set of non-empty cells CNE .

Update. Assume point a ∈ A is inserted into cell c ∈ G . If c is already in CNE , simply add
a to Ac. Otherwise, we add c to CNE with Ac = {a} and update mc as follows. We visit
each cell c′ ∈ CNE with ϕ(c, c′) ≤ 1, and add |Bc′ | to mc. A point of A is deleted in a similar
manner. Assume point b ∈ B is inserted into cell c ∈ G . If c /∈ CNE , we add it to CNE . In
any case, we first insert b into Bc and for every cell c′ ∈ CNE with ϕ(c, c′) ≤ 1, we increase
mc′ by 1 and add c′ to C if c′ turns from inactive to active. A point from B is deleted in
a similar manner. As there are O(ε−d) cells within distance 1 from c, this procedure takes
Õ(ε−d) time.

Enumeration. For each active cell c ∈ C , we visit each cell c′ ∈ CNE within distance 1. If
Bc′ ≠ ∅, we report all pairs of points in Ac × Bc′ . It is obvious that each pair of points is
enumerated at most once. For an active cell c, there must exists a pair (a ∈ Ac, b ∈ Bc′) for
some cell c′ ∈ CNE such that ϕ(a, b) ≤ ϕ(c, c′) + diam(c) + diam(c′) ≤ 1 + ε. So it takes at
most O(ε−d log n) time before finding at least one result for c; thus, the delay is O(ε−d log n).

1 When extending it to any ℓp norm, the size of each grid cell is ε/(2d1/p) and the diameter is ϵ
2 .
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Furthermore, consider every pair of points a, b with ϕ(a, b) ≤ 1. Assume a ∈ c and b ∈ c′.
By definition, c must be an active grid cell. Thus, (a, b) will definitely be enumerated in this
procedure, thus guaranteeing the correctness of ε-enumeration.

▶ Theorem 9. Let A, B be two sets of points in Rd for some constant d, with |A|+ |B| = n.
A data structure of O(n) size can be constructed in O(nε−d log n) time and updated in
O(ε−d log n) time, while supporting ε-approximate enumeration of similarity join under any
ℓp metric with O(ε−d log n) delay.

Note that if for each active cell c ∈ C , we store the cells within distance 1 that contain
at least a point from B, i.e., {c′ ∈ C | ϕ(c, c′) ≤ 1, Bc ̸= ∅}, then the delay can be further
reduced to O(1) but the space becomes O(ε−dn).

4 Similarity Join in High Dimensions

So far, we have treated the dimension d as a constant. In this section we describe a data
structure for approximate similarity join using the locality sensitive hashing (LSH) technique,
so that the dependency on d is a small polynomial. For simplicity, we assume that r is fixed,
however our results can be extended to the case in which r is part of the enumeration query.

For ε > 0, 0 < p2 < p1 ≤ 1, a family H of hash functions is (r, (1 + ε)r, p1, p2)-sensitive,
if for any uniformly chosen hash function h ∈ H and any two points x, y:

Pr[h(x) = h(y)] ≥ p1 if ϕ(x, y) ≤ r;
Pr[h(x) = h(y)] ≤ p2 if ϕ(x, y) ≥ (1 + ε)r.

The quality of H is measured by ρ = ln p1
ln p2

< 1, which is upper bounded by a number that
depends only on ε; and ρ = 1

1+ε for many common distance functions [27, 22, 29]. For ℓ2 the
best result is ρ ≤ 1

(1+ε)2 + o(1) [9].
The essence of LSH is to hash “similar” points into the same buckets with high probability.

A simple approach based on LSH is to (i) hash points into buckets; (ii) probe each bucket
and check for each pair of points (a, b) ∈ A×B inside the same bucket whether ϕ(a, b) ≤ r;
and (iii) report (a, b) if the inequalities holds. However, two challenges arise for enumeration.
First, without any knowledge of false positive results inside each bucket, checking every pair
of points could lead to a huge delay. Our key insight is that after checking a small number
(to be determined later) of pairs of points in one bucket, we can safely skip the bucket since
any pair of result missed in this bucket will be found in another one with high probability.
Second, one pair of points may collide under multiple hash functions, so an additional step
is necessary in the enumeration to remove duplicates. If we wish to keep the size of data
structure to be near-linear and if we are not allowed to store the reported pairs (so that the
size remains near linear), detecting duplicates requires care.

Since we do not define new hash functions, our results hold for any metric for which LSH
works, in particular for Hamming, ℓ2, ℓ1 metrics.

Data structure. We fix an LSH family H . Let ρ be its quality parameter. To ensure
high-probability guarantee, we maintain O(log n) copies of the whole data structure below.

We randomly choose τ = O(nρ) hash functions. Each possible value in the range of hash
functions defines a bucket. We maintain some extra statistics for all buckets. We choose a
parameter M = O(nρ). For a bucket □, let A□ = A ∩□ and B□ = B ∩□. We choose two
arbitrary subsets Ā□, B̄□ of A□, B□, respectively, of M points each. For each point a ∈ Ā□,
we maintain a counter βa = |{b ∈ B̄□ | ϕ(a, b) ≤ 2(1 + ε)r}|, i.e., the number of points in
B̄□ with distance at most 2(1 + ε)r from a. We store Ā□ in an increasing order of their
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β values. If there exists some positive counter βa > 0, we denote bucket □ as active and
store an arbitrary pair (a, b) ∈ Ā□ × B̄□ with ϕ(a, b) ≤ 2(1 + ε)r as its representative pair,
denoted as (a□, b□). Let C denote the set of active buckets.

Before diving into the details of update and enumeration, we give some intuition about
active buckets. Given a set P of points and a distance threshold r, let B(q, P, r) = {p ∈ P |
ϕ(p, q) > r}. For any pair of points (a, b) ∈ A× B and a hashing bucket □, we refer to □
as the proxy bucket for (a, b) if (i) a ∈ A□, b ∈ B□; (ii) |B̄(a, A□ ∪ B□, (1 + ε)r)| ≤ M . A
crucial property of proxy bucket is captured by Lemma 10. Moreover, it can be shown that
with high probability each close pair of points has a proxy bucket in Lemma 11 (more details
are given in the full version [4]). In this way, it is safe to skip a bucket after we have seen up
to M2 faraway pairs of points inside, since the close pairs of points in this bucket will be
captured by other buckets. In this way, we only need to report pairs from active buckets.

▶ Lemma 10. For any bucket □, if there exist M points from A□ and B□ each, such that
none of the M2 pairs has its distance within 2(1 + ε)r, □ is not a proxy bucket for any pair
(a, b) ∈ A□ ×B□ with ϕ(a, b) ≤ r.

Proof of Lemma 10. Let A′, B′ be two sets of M points from A□, B□ respectively. We
assume that all pairs of points in A′ ×B′ have their distances larger than 2(1 + ε)r. Observe
that □ is not a proxy bucket for any pair (a ∈ A′, b ∈ B′). It remains to show that □ is not
a proxy bucket for any pair (a ∈ A□ \A′, b ∈ B□). Assume b ∈ B□ \B′ (the case is similar
if b ∈ B′). If A′ ⊆ B̄(a, A, (1 + ε)r) or B′ ⊆ B̄(a, B, (1 + ε)r), □ is not a proxy bucket for
(a, b). Otherwise, there must exist at least one point a′ ∈ A′ as well as b′ ∈ B′ such that
ϕ(a, a′) ≤ (1 + ε)r and ϕ(a, b′) ≤ (1 + ε)r, so ϕ(a′, b′) ≤ ϕ(a, a′) + ϕ(a, b′) ≤ 2(1 + ε)r. Thus,
(a′, b′) ∈ A′ ×B′ is a pair within distance 2(1 + ε)r, coming to a contradiction. ◀

▶ Lemma 11 ([27, 28, 32]). For M = O(nρ), with probability 1− 1/n, every pair of points
(a, b) with ϕ(a, b) ≤ r has a proxy bucket.

Update. Assume a point a ∈ A is being inserted. We visit every bucket □ into which a is
hashed and insert a to A□. If |Ā□| ≥M , we do nothing. Otherwise, we insert a to Ā□ and
compute its counter βa. If βa > 0 and □ /∈ C , we add □ to C and store an arbitrary pair
(a, b) for some b ∈ B̄□ with ϕ(a, b) ≤ 2(1 + ε)r, as the representative pair of □. Notice that
there always exists such a point b since βa > 0.

Assume a point a ∈ A is being deleted. We visit every bucket □ into which a is hashed
and delete a from A□. If a ∈ Ā□, we delete it from Ā□ and insert an arbitrary point (if any)
from A□ \ Ā□ into Ā□. If a = a□, i.e., a participates in the representative pair of □, we find
a new representative pair by considering an arbitrary point a′ ∈ Ā□ with βa′ > 0. If no such
point exists, we remove □ from C .

The case when point b ∈ B is inserted or deleted is similar but with slight differences.
Assume a point b ∈ B is being inserted. We visit every bucket □ into which b is hashed
and inserted b to B□. If |B̄□| ≥ M , we do nothing. Otherwise, we insert b to B̄□ and
increment counter βa for every point a ∈ Ā□ with ϕ(a, b) ≤ 2(1 + ϵ)r. Moreover, if □ /∈ C

and there exists some point a ∈ Ā□ with βa > 0 after update, say a′, we store (a′, b) as the
representative pair of □ and add □ to C .

Assume a point b ∈ B is being deleted. We visit every bucket □ into which b is hashed
and delete b from B□. If b ∈ B̄□, we delete it from B̄□ and insert an arbitrary point (if any)
from B□ \ B̄□ into B̄□. Moreover, we need to update counter βa for every point a ∈ Ā□. If
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b = b□, i.e., b participates in the representative pair of □, we find a new representative pair
by considering an arbitrary point a ∈ Ā□ with βa > 0. If no such pair exists, we remove □
from C .

After performing n/2 updates, we reconstruct the entire data structure from scratch.

Enumeration. Let R be the set of representative pairs. As mentioned, the high-level idea
is to enumerate representative pairs from active buckets. More specifically, we start with an
arbitrary representative pair (a, b) ∈ R, and enumerate all pairs involving point a from C (a),
where C (a) ⊆ C is the set of active buckets containing a. Then, we remove a from each
bucket □ ∈ C (a). If a ∈ Ā□, we remove a from Ā□; moreover, we add a point a′ ∈ Ā− Ā□

to Ā□ to ensure |Ā□| = M if |A□| ≥ M and compute βa′ . If a = a□, we compute a new
representative pair (a□, b□) of □. If no such new representative pair exists, we just remove
□ from the set of active buckets; otherwise, we add the new pair (a□, b□) to R. We repeat
this process until R becomes empty. The whole procedure is described in Algorithm 1.

Algorithm 1 Enumerate.

1 R ← {(a□, b□) : □ ∈ C };
2 while R ̸= ∅ do
3 (a, b)← R;
4 C (a)← {□ ∈ C : a ∈ A□};
5 Report(a, C (a));
6 foreach □ ∈ C (a) do
7 A□ ← A□ − {a};
8 if a ∈ Ā□ then
9 Ā□ ← Ā□ − {a};

10 if |A□| ≥M then
11 Pick arbitrary point a′ ∈ A□ − Ā□;
12 Ā□ ← Ā□ ∪ {a′};
13 if a = a□ then
14 R ← R − {(a□, b□)};
15 Recompute (a□, b□) for □;
16 if (a□, b□) = ∅ then
17 C ← C − {□};
18 else
19 R ← R ∪ {(a□, b□)};

In line 5 of Algorithm 1, we report all pairs including point a is described in Algorithm 2.
For a bucket □ ∈ C (a), whenever we report a pair (a, b), we mark b with a. If b was already
marked by some other point a′ because (a′, b) was reported, we overwrite a′ with a. Let
X(□, a) ⊆ B□ be the set of points in B□ marked with a. We visit every bucket □ ∈ C (a)
and check the distances between a and points in B□ \X(□, a). Each time a pair (a, b) with
ϕ(a, b) ≤ 2(1 + ε)r is found, we report it and mark b with a to ensure that we will not report
(a, b) again. More specifically, we go over each active bucket □ ∈ C (a) into which b is also
hashed, and put a marker on b with respect to a. Implied by line 3 of Algorithm 2, we only
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consider points not marked by X(□, a), thus avoiding repeated enumeration.2 Whenever
more than M points from B□ have been checked without finding a pair with distance less
than 2(1 + ε)r (or if all points in B□ have been considered), we just skip this bucket.

Algorithm 2 Report(a, C (a)).

1 foreach □ ∈ C (a) do
2 i← 0;
3 foreach b ∈ B□ −X(□, a) do
4 if ϕ(a, b) ≤ 2(1 + ε)r then
5 Report (a, b);
6 foreach □′ ∈ C (a) with b ∈ B□′ do
7 X(□′, a)← X(□′, a) ∪ {b};
8 else
9 i← i + 1;

10 if i > M then break;

Correctness analysis. The report procedure guarantees that each pair of points is enumer-
ated at most once. It remains to show that (1 + 2ε)-approximate enumeration is supported.

We show that (1 + 2ε)-approximate enumeration is supported with probability 1− 1/n.
It can be easily checked that any pair of points farther than 2(1 + ε)r will not be enumerated.
Hence, it suffices to show that all pairs within distance r are enumerated with high probability.
From Lemma 11, with high probability every pair within distance 1 has a proxy bucket. Let
□ be a proxy bucket for pair (a, b). Implied by Lemma 10, there exist no M points from
A□ (for example Ā□) and M points from B□ (for example B̄□) such that all M2 pairs have
their distance larger than 2(1 + ε)r, so □ is active. Moreover, from the definition of M and
the proof of Lemma 10 (check [4] the complete proof) there exist no M points from B□ such
that all of them have distance more than 2(1 + ε)r from a, so Algorithm 2 will report (a, b).

Complexity analysis. Recall that τ, M = O(nρ). The data structure uses O(dn + nτ log n)
space since we only use linear space with respect to the points in each bucket. The update
time is Õ(dM · τ) as there are Õ(τ) buckets to be investigated and it takes Õ(dM) time
to update the representative pair. After n/2 updates we re-build the data structure so the
update time is amortized. The delay is Õ(dM · τ). In order to replace a with an arbitrary
point a′ ∈ A□− Ā□ in line 8 of Algorithm 1 we need O(dM) time and there are Õ(τ) buckets
that we need to visit. In total, this step takes Õ(dMτ) time. In Algorithm 2, we spend
Õ(dMτ) time to report a pair of results and Õ(τ) time to mark point b over all buckets.

We conclude with the following result:

▶ Theorem 12. Let A and B be two sets of points in Rd, where |A|+ |B| = n and let ε, r

be positive parameters. For ρ = 1
(1+ε)2 + o(1), a data structure of Õ(dn + n1+ρ) size can be

constructed in Õ(dn1+2ρ) time, and updated in Õ(dn2ρ) amortized time, while supporting
(1 + 2ε)-approximate enumeration for similarity join under the ℓ2 metric with Õ(dn2ρ) delay.

2 To avoid conflicts with the markers made by different enumeration queries, we can generate them
randomly and delete old values by lazy updates [24, 38, 39] after finding new pairs to report.
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▶ Remark. Alternatively, we can insert or delete points from A ∪B without maintaining the
sets Ā□, B̄□ for every bucket □. In the enumeration phase, given a bucket □, we can visit
M arbitrary points from A□ and M arbitrary points from B□ and compute their pairwise
distances. If there is no pair (a ∈ A□, b ∈ B□) with ϕ(a, b) ≤ 2(1 + ε)r, we just skip this
bucket. Otherwise, we report the pair (a, b) and invoke Algorithm 2 for point a. In this case,
the update time decreases to Õ(dnρ) but the delay will increases to Õ(dn3ρ).

The same result holds for Hamming and ℓ1 metrics with ρ = 1
1+ε . Using [32], for the

Hamming metric and ε > 1 we can get M = O(1). Skipping the details, we have:

▶ Theorem 13. Let A and B be two sets of points in Hd, where |A|+ B| = n and let ε, r

be positive parameters. For ρ = 1
1+ε , a data structure of Õ(dn + n1+ρ) size can be built in

Õ(dn1+ρ) time, and updated in Õ(dnρ) amortized time, while supporting (3+2ε)-approximate
enumeration for similarity join under the Hamming metric with Õ(dnρ) delay.

In the full version [4], we show that our results can be extended to the case where r is
part of the enumeration procedure, and we also prove a lower bound relating similarity join
to the approximate nearest neighbor query.

5 Conclusion

In this paper, we presented dynamic data structures for enumerating similarity join queries
with delay guarantees. We present several efficient data structures for dynamic enumeration
of similarity joins in constant or higher dimensions over various metrics.

Note that our data structures provide worst-case delay guarantee for arbitrary input data
and arbitrary updates. In practice, most real-world update sequences are “nice”, nowhere
near these worst-case scenarios; and input points from two sets might be dependent, or follow
certain parameterized distributions. A more fine-grained analysis on the intrinsic difficulty
of update sequences in dynamic enumeration of similarity joins is quite interesting but still
open. Similar instance-dependent analysis has been considered in [46].

Another interesting direction is to investigate other variants of similarity join queries
under more general metrics, such as doubling metric space, and more complicated distance
functions, such as the cosine distance.
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