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ABSTRACT
Parallel join algorithms have received much attention in re-
cent years, due to the rapid development of massively paral-
lel systems such as MapReduce and Spark. In the database
theory community, most efforts have been focused on study-
ing worst-optimal algorithms. However, the worst-case op-
timality of these join algorithms relies on the hard instances
having very large output sizes. In the case of a two-relation
join, the hard instance is just a Cartesian product, with an
output size that is quadratic in the input size.

In practice, however, the output size is usually much smaller.
One recent parallel join algorithm by Beame et al. [8] has
achieved output-optimality, i.e., its cost is optimal in terms
of both the input size and the output size, but their algo-
rithm only works for a 2-relation equi-join, and has some
imperfections. In this paper, we first improve their algo-
rithm to true optimality. Then we design output-optimal
algorithms for a large class of similarity joins. Finally, we
present a lower bound, which essentially eliminates the pos-
sibility of having output-optimal algorithms for any join on
more than two relations.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical Algorithms and Problems

Keywords
Parallel computation, similarity joins, output-sensitive algo-
rithms

1. INTRODUCTION
The similarity join problem is perhaps one of the most

extensively studied problems in the database and data min-
ing literature. Numerous variants exist, depending on the
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metric space and the distance function used. Let dist(·, ·) be
a distance function. Given two point sets R1 and R2 and a
threshold r ≥ 0, the similarity join problem asks to find all
pairs of points x ∈ R1, y ∈ R2, such that dist(x, y) ≤ r. In
this paper, we will be mostly interested in the `1, `2, and `∞
distances, although some of our results (the one based on
LSH) can be extended to other distance functions as well.

1.1 The computation model
Driven by the rapid development of massively parallel sys-

tems such as MapReduce [14], Spark [29], and many other
systems that adopt very similar architectures, there have
also been resurrected interests in the theoretical computer
science community to study algorithms in such massively
parallel models. One popular model that has often been
used to study join algorithms in particular, is the massively
parallel computation model (MPC) [1, 2, 3, 7, 8, 20, 21, 22].

In the MPC model, data is initially partitioned arbitrarily
across p servers that are connected by a complete network.
Computation proceeds in rounds. In each round, each server
first receives messages from other servers (sent in a previous
round, if there is one), does some local computation, and
then sends messages to other servers, which will be received
by them at the beginning of the next round. The complexity
of the algorithm is measured first by the number of rounds,
then the load, denoted L, which is the maximum message
size received by any server in any round. Initial efforts were
mostly spent on understanding what can be done in a single
round of computation [2, 7, 8, 21, 22], but recently, more in-
terests have been given to multi-round (but still a constant)
algorithms [1, 3, 20, 21], since new main memory based sys-
tems, such as Spark, tend to have much lower overhead per
round than previous systems like Hadoop. Meanwhile, this
puts more emphasis on minimizing the load, to ensure that
the local memory at each server is never exceeded.

One thing that we want to point out, which was never
explicitly stated in the prior work on the MPC model, is
that the MPC model is essentially the same as Valiant’s bulk
synchronous processing model (BSP) [28]. More precisely, it
is the same as the CREW version of the BSP [15], where
a server may broadcast a message to multiple servers. The
incoming message size at each server is still limited in the
CREW BSP model, as in the MPC model.

The MPC model, as well as the CREW BSP model, al-
lows broadcasts. This is often justified by the fact that in
some systems, broadcasts may indeed be more efficient than
sending the message to each destination individually. Very
recently, it has been shown [18] that any algorithm in the



CREW BSP model can be simulated in the standard BSP
model without using any broadcasts by just increasing the
number of rounds and the load by a constant factor, pro-
vided that IN > p1+ε, where IN is the input size and ε > 0
is any small constant. This provides a stronger justification
of using broadcasts.

1.2 Previous join algorithms in the MPC model
All prior work on join algorithms in the MPC model has

focused on equi-joins, and has mostly been concerned with
the worst case. Notably, the hypercube algorithm [2] com-
putes the equi-join between two relations of size N1 and N2,
respectively, with load L = Õ(

√
N1N2/p)

1. Note that this is
optimal in the worst case, as the output size can be as large
as N1N2, when all tuples share the same join key and the
join degenerates into a Cartesian product. Since each server
can only produce O(L2) join results in a round2 if the load
is limited to L, all the p servers can produce at most O(pL2)
join results in a constant number of rounds. Thus, produc-
ing N1N2 results needs at least a load of L = Ω(

√
N1N2/p).

Note that this lower bound argument is assuming tuple-
based join algorithms, i.e., the tuples are atomic elements
that must be processed and communicated in their entirety.
They can be copied but cannot be broken up or manipulated
with bit tricks. To produce a join result, all tuples (or their
copies) that make up the join result must reside at the same
server when the join result is output. However, the server
does not have to do any further processing with the result,
such as sending it to another server. The same model has
also been used in [7, 8, 21].

However, on most realistic data sets, the join size is nowhere
near the worst case. Suppose the join size is OUT. Apply-
ing the same argument as above, one would hope to get
a load of Õ(

√
OUT/p). Such a bound would be output-

optimal. Of course, this is not entirely possible, as OUT
can even be zero, so a more reasonable target would be
L = Õ(

√
OUT/p+ IN/p), where IN = N1 +N2 is the total

input size. This is exactly the goal of this work, although in
some cases, we have not achieved this ideal input-dependent
term Õ(IN/p) exactly. Note that we are still doing worst-
case analysis, i.e., we do not make any assumptions on the
input data and how it is distributed on the p servers initially.
We merely use OUT as an additional parameter to measure
the complexity of the algorithm.

There are some previous join algorithms that use both
IN and OUT to measure the complexity. Afrati et al. [1]
gave an algorithm with load O(INw/

√
p+ OUT/

√
p), where

w is the width of the join query, which is 1 for any acyclic
query, including a two-relation join. However, both terms
O(OUT/

√
p) or O(IN/

√
p) are far from optimal.

Beame et al. [8] classified the join values into being heavy
and light. For a join value v, let Ri(v) be the set of tuples
in Ri with join value v. Then a join value v is heavy if
|R1(v)| ≥ N1/p or |R2(v)| ≥ N2/p. Then they gave an
algorithm with load

Θ̃

√∑heavy v |R1(v)| · |R2(v)|
p

+
IN

p

 . (1)

1The Õ notation suppresses polylogarithmic factors.
2Technically, this is true under the condition L = Ω(N1+N2

p
),

but as will be proved in this paper, the condition indeed
holds even just to decide whether the join result is empty.

In fact, this bound can be equivalently written as Θ̃(
√

OUT/p+
IN/p). Note that

OUT =
∑
v

|R1(v)| · |R2(v)|

=
∑

heavy v

|R1(v)| · |R2(v)|+
∑

light v

|R1(v)| · |R2(v)|,

so (1) is upper bounded by Õ(
√

OUT/p+IN/p). Meanwhile,

it is also lower bounded by Ω̃(
√

OUT/p+ IN/p): First, it is

clearly in Ω̃(IN/p). Second, it is also in Ω̃(
√

OUT/p) since∑
light v

|R1(v)| · |R2(v)| ≤ N1N2

p
≤ IN2

p
,

hence

(1) = Ω̃

√OUT− IN2/p

p
+

IN

p


= Ω̃

√OUT− IN2/p

p
+

IN2

p2

 = Ω̃(
√

OUT/p).

Therefore, their algorithm is output-optimal, but up to a
polylog factor, due to the use of hashing (the hidden polylog
factor is O(log2 p)). Their analysis relies on the uniform
hashing assumption, i.e., the hash function distributes each
distinct key to the servers uniformly and independently. It
is not clear whether more realistic hash functions, such as
universal hashing, could still work. They also assume that
each server knows the entire set of heavy join values and
their frequencies, namely, all the |Ri(v)|’s that are larger
than Ni/p, for i = 1, 2.

Note that equi-join is a special case of similarity joins
with r = 0. There are previously no algorithms in the MPC
model for similarity joins with r > 0, except computing
the full Cartesian product of the two relations with load
O(
√
N1N2/p), which is not output-optimal.

As a remark, there exists a general reduction [21] that con-
verts MPC join algorithms into I/O-efficient counterparts
under the enumerate version [26] of the external memory
model [4], where each result tuple only needs to be seen in
memory, as opposed to being reported in the disk. A nice
application of the reduction has been demonstrated for the
triangle enumeration problem, where an MPC algorithm [21]
is shown to imply an EM algorithm matching the I/O lower
bound of [26] up to a logarithmic factor.

1.3 Our results
We start with an improved algorithm for computing the

equi-join between two relations, i.e., a degenerated similarity
join with r = 0. We improve upon the algorithm of Beame
et al. [8] in the following aspects: (1) Our algorithm does
not assume any prior statistical information about the data,
such as the heavy join values and their frequencies. (2) The

load of our algorithm is exactly O(
√

OUT/p+IN/p) tuples,
without any extra logarithmic factors. (3) Our algorithm is
deterministic. The only price we pay is that the number of
rounds increases from 1 to O(1). This algorithm is described
in Section 3.

While the O(
√

OUT/p) term is optimal by the tuple-
based argument above, prior work did not show why the
input-dependent term O(IN/p) is necessary. In fact, the load



has often been written in form of O(IN/p1−δ) for δ ∈ [0, 1],
implicitly assuming that O(IN/p) is the best load possible,
i.e., every tuple has to be communicated at least once. In-
deed, if OUT is not a parameter, the worst-case input is
always when the output size is maximized, i.e., a full Carte-
sian product for two-relation joins, or the AGM bound [6]
for multi-way joins. In this case, the simple tuple-based ar-
gument above already leads to a lower bound higher than
Ω(IN/p), so this is not an issue. However, when the out-
put size is restrained to be a parameter OUT, these worst-
case constructions do not work anymore; and it is not clear
why O(IN/p) load is necessary. Indeed, if OUT = 1, then
the tuple-based argument above yields a meaningless lower
bound of Ω(1/p). To complete the picture, we provide a
lower bound showing that even if OUT = O(1), computing
the equi-join between two relations requires Ω(IN/p) load,
by resorting to strong results from communication complex-
ity.

The main results in this paper, however, are on similarity
joins with r > 0. In this regard, We achieve the following
results under various distance functions.

1. For `1/`∞ distance in constant dimensions, we give a
deterministic algorithm with load

O

(√
OUT

p
+

IN

p
· logO(1) p

)
,

i.e., the output-dependent term is optimal, while the
input-dependent term is away from optimal by a poly-
logarithmic factor, which depends on the dimensional-
ity.

2. For `2 distance in d dimensions, we give a randomized
algorithm with load

O

(√
OUT

p
+ IN/p

d
2d−1 + p

d
2d−1 log p

)
.

Again, the term O
(√

OUT
p

)
is output-optimal. The

input-dependent term O(IN/p
d

2d−1 ) is worse than the
`1/`∞ case, due to the non-orthogonal nature of the `2
metric, but it is always better than O(IN/

√
p), which

is the load for computing the full Cartesian product.

3. In high dimensions, we provide an LSH-based algo-
rithm with load

O

(√
OUT

p1/(1+ρ)
+

√
OUT(cr)

p
+

IN

p1/(1+ρ)

)
,

where OUT(cr) is the output size if the distance thresh-
old is enlarged to cr for some constant c > 1, and
0 < ρ < 1 is the quality measure of the hash func-
tion used, which depends only on c and the distance
function. Similarly, the term O(IN/p1/(1+ρ)) is always
better than that for computing the Cartesian product,
although output-optimality here is only with respect
to OUT(cr) instead of OUT, due to the approxima-
tion nature of LSH.

All the algorithms run in O(1) rounds, under the mild
assumption IN > p1+ε, where ε > 0 is any small constant.
Note that the randomized output-optimal algorithm in [8]
for equi-joins has an implicit assumption that IN ≥ p2, since

there are Θ(p) heavy join values, so each server has load at
least Ω(p) to store these values and their frequencies. We
acknowledge that in practice, IN ≥ p2 is a very reasonable
assumption. Our desire to relax this to IN > p1+ε is more
from a theoretical point of view, namely, achieving the min-
imum requirement for solving these problem in O(1) rounds
and optimal load. Indeed, Goodrich [15] has shown that,

if IN = p1+o(1), then even computing the “or” of IN bits
requires ω(1) rounds under load O(IN/p).

Finally, we turn to multi-way joins. The only known
multi-way equi-join algorithm in the MPC model that has
a term related to OUT is the algorithm in [1] mentioned
in Section 1.2. However, that term is O(OUT/

√
p), which

is almost quadratically larger than the output-optimal term
O(
√

OUT/p) we have achieved above. We show that, un-
fortunately, such an output-optimal term is not achievable,
even for the simplest multi-way equi-join, a 3-relation chain
join R1(A,B) ./ R2(B,C) ./ R3(C,D). More precisely, in
Section 7 we show that if any tuple-based algorithm com-
puting this join has a load in the form of

L = O

(
IN

pα
+

√
OUT

p

)
,

for some constant α, then we must have α ≤ 1/2, pro-
vided IN log2 IN = Ω(p3). On the other hand, the algorithm
in [21] can already compute any 3-relation chain join with

Õ(IN/
√
p) load. This means that it is meaningless to intro-

duce the output-dependent term O(
√

OUT/p).

2. PRELIMINARIES
We first introduce the following primitives in the MPC

model. We will assume IN > p1+ε where ε > 0 is any small
constant.

2.1 Sorting
The sorting problem in the MPC model is defined as fol-

lows. Initially, IN elements are distributed arbitrarily on p
servers, which are labeled 1, 2, . . . , p. The goal is to redis-
tribute the elements so that each server has IN/p elements
in the end, while any element at server i is smaller than or
equal to any element at server j, for any i < j. By real-
izing that the MPC model is the same as the BSP model,
we can directly invoke Goodrich’s optimal BSP sorting al-
gorithm [15]. His algorithm has load L = Θ(IN/p) and runs
in O(logL IN) = O(logL(pL)) = O(logL p) rounds. When
IN > p1+ε, this is O(1) rounds.

2.2 Multi-numbering
Suppose each tuple has a key. The goal of the multi-

numbering problem is, for each key, assign consecutive num-
bers 1, 2, 3, . . . to all the tuples with the same key.

We solve this problem by reducing it to the all prefix-
sums problem: Given an array of elements A[1], . . . , A[IN],
compute S[i] = A[1]⊕ · · · ⊕A[i] for all i = 1, . . . , IN, where
⊕ is any associative operator. Goodrich et al. [16] gave
an algorithm in the BSP model for this problem that uses
O(IN/p) load and O(1) rounds.

To see how the multi-numbering problem reduces to the
all prefix-sums problem, we first sort all tuples by their keys;
ties are broken arbitrarily. The i-th tuple in the sorted or-
der will produce a pair (x, y), which will act as A[i]. For
each tuple that is the first of its key in the sorted order, we



produce the pair (0, 1); otherwise, we produce (1, 1). Note
that we need another round of communication to determine
whether each tuple is the first of its key, in case that its
predecessor resides on another server.

Then we define the operator ⊕ as

(x1, y1)⊕ (x2, y2) = (x1x2, y),

where

y =

{
y1 + y2, if x2 = 1;
y2, if x2 = 0.

Consider any (x, y) = A[i]⊕ · · · ⊕ A[j]. Intuitively, x = 0
indicates that A[i], . . . , A[j] contain at least one tuple that
is the first of its key, while y counts the number of tuples
in A[i], . . . , A[j] whose key is the same as that of A[j]. It
is an easy exercise to check that ⊕ is associative, and after
solving the all prefix-sums problem, S[i] is exactly the num-
ber of tuples in front of the i-th tuple that has the same
key (including the i-th tuple itself), which solves the multi-
numbering problem as desired.

2.3 Sum-by-key
Suppose each tuple is associated with a key and a weight.

The goal of the sum-by-key problem is to compute, for each
key, the total weight of all the tuples with the same key.

This problem can be solved using essentially the same
approach as for the multi-numbering problem. First sort all
theN tuples by their keys. As above, each tuple will produce
a pair (x, y). Now, x still indicates whether this tuple is the
first of its key, but we just set y to be the weight associated
with the tuple. After we have solved the all prefix-sums
problem on these pairs, the last tuple of each key has the
total weight for this key. Again, we need another round to
identify the last tuple of each key, by checking each tuple’s
successor.

After the algorithm above finishes, for each key, exactly
one tuple knows the total weight for the key, i.e., the last
one in the sorted order. In some cases, we also need every
tuple to know the total weight for the tuple’s own key. To
do so, we invoke the multi-numbering algorithm, so that the
last tuple of each key also knows the number of tuples with
that key. From this number, we can compute exactly the
range of servers that hold all the tuples with this key. Then
we broadcast the total weight to these servers.

2.4 Multi-search
The multi-search problem is defined as follows. Given N1

distinct keys and N2 queries, where IN = N1 +N2, for each
query, find its predecessor, i.e., the largest key that is no
larger than the query. The multi-search algorithm given by
Goodrich et al. [16] is randomized, with a small probability
exceeding O(IN/p) load. In fact, this problem can also be
solved using all prefix-sums, which results in a determinis-
tic algorithm with load O(IN/p): We first sort all the keys
and queries together. Then for each key k, define its corre-
sponding A[i] as itself; for each query, define its A[i] = −∞;
define ⊕ = max. Then it should be obvious that S[i] is the
predecessor of the corresponding query.

2.5 Cartesian product
The hypercube algorithm [2, 8] is a randomized algorithm

that computes the Cartesian product of two sets R1 and
R2. Suppose the two sets have size N1 and N2, respectively.

This algorithm has a load of O((
√
N1N2/p + IN/p) log2 p)

with probability 1 − 1/pO(1). The extra log factors are due
to the use of hashing. We observe that if the elements in
each set are numbered as 1, 2, 3, . . . , then we can achieve
deterministic and perfect load balancing.

Without loss of generality, assume N1 ≤ N2. As in the
standard hypercube algorithm, we arrange the p servers into
a d1 × d2 grid such that d1d2 = p. If an element in R1 gets
assigned a number x, then we send it to all servers in the (x
mod d1)-th row of the grid; for an element in R2, we send
it to all servers in the (x mod d2)-th column of the grid.
Each server then produces all pairs of elements received. By

setting (1) d1 =
√

pN1
N2

, d2 =
√

pN2
N1

, if N2 ≤ pN1; or (2)

d1 = 1, d2 = p, if N2 > pN1, the load is O(
√
N1N2/p +

IN/p).

2.6 Server allocation
In many of our algorithms, we decompose the problem

into up to p subproblems, and allocate the p servers ap-
propriately, with subproblem j having p(j) servers, where∑
j p(j) ≤ p. Thus, each subproblem needs to know which

servers have been allocated to it. This is trivial if IN ≥ p2,
as we can collect all the p(j)’s to one server, do a central al-
location, and broadcast the allocation results to all servers,
as is done in [8]. When we only have IN ≥ p1+ε, some more
work is needed to ensure O(IN/p) load.

More formally, in the server allocation problem, each tuple
has a subproblem id j, which identifies the subproblem it
belongs to (the j’s do not have to be consecutive), and p(j),
which is the number of servers allocated to subproblem j.
The goal is to attach each tuple a range [p1(j), p2(j)], such
that the ranges of different subproblems are disjoint and
maxj p2(j) ≤ p.

We again resort to all prefix-sums. First sort all tuples by
their subproblem id. For each tuple, define its corresponding
A[i] = p(j) if it is the first tuple of subproblem j, and 0
otherwise. After running all prefix-sums, for each tuple, we
set its p2(j) = S[i], and p1(j) = S[i]− p(j) + 1.

3. EQUI-JOIN
We start by revisiting the equi-join problem between 2

relations, R1 1 R2. Let N1 and N2 be the sizes of R1

and R2, respectively; set IN = N1 + N2. First, if N1 >
pN2 or N2 > pN1, the problem can be trivially solved by
broadcasting the smaller relation to all servers, incurring a
load of O(min{N1, N2}). Below, we assume N1 ≤ N2 ≤
pN1, and describe an algorithm that achieves the following
result.

Theorem 1. There is a deterministic algorithm that com-
putes the equi-join between 2 relations in O(1) rounds with

load O
(√

OUT
p

+ IN
p

)
. It does not assume any prior statis-

tical information about the data.

3.1 The algorithm
Our algorithm can be seen as an MPC version of sort-

merge-join.

Step (1) Computing OUT
Consider each distinct join value v. Let Ri(v) be the set of

tuples in Ri with join value v; let Ni(v) = |Ri(v)|. Note that



OUT =
∑
v N1(v)N2(v). We first use the sum-by-key algo-

rithm to compute all the Ni(v)’s, i.e., each tuple in Ri(v) is
considered to have key v and weight 1. Recall that after the
sum-by-key algorithm, for each v, exactly one tuple knows
Ni(v). We sort all such tuples by the key v. Then we add up
all the N1(v)N2(v)’s, which can also be done by sum-by-key
(just that the key is the same for all tuples).

Step (2) Computing R1 1 R2

Next, we compute the join, i.e., the Cartesian products
R1(v) × R2(v) for all v. Sort all tuples in both R1 and R2

by the join value. Consider each join value v. If all tuples in
R1(v)∪R2(v) land on the same server, their join results can
be emitted directly, so we only need to deal with the case
when they land on 2 or more servers. There are at most p
such v’s. For each such v, we allocate

pv =

⌈
p · N1(v)

N1
+ p · N2(v)

N2
+ p · N1(v)N2(v)

OUT

⌉
servers and compute the Cartesian product R1(v) × R2(v).
Note that we need a total of O(p) servers; scaling down
the initial p can ensure that at most p servers are needed.
Here, we also need the server allocation primitive to allo-
cate servers to these subproblems accordingly. Finally, to
be able to use the deterministic version of the hypercube al-
gorithm, the elements in each Ri(v) need to be assigned
consecutive numbers, which can be achieved by running
the multi-numbering algorithm, treating each distinct join
value v as a key. It can be easily verified that the load is

O
(√

N1(v)N2(v)
pv

+ N1(v)
pv

+ N2(v)
pv

)
= O

(√
OUT
p

+ N1
p

+ N2
p

)
.

3.2 A matching lower bound
As argued in Section 1.2, the termO(

√
OUT/p) is optimal

for any tuple-based algorithm. Below we show that the term
O(IN/p) is also necessary, even when OUT = O(1).

Theorem 2. Any randomized algorithm that computes the
equi-join between 2 relations in O(1) rounds with a suc-
cess probability more than 3/4 must incur a load of at least
Ω(min{N1, N2,

IN
p
}) bits.

Proof. We use a reduction from the lopsided set disjoint-
ness problem studied in communication complexity: Alice
has ≤ n elements and Bob has ≤ m elements with m > n,
both from a universe of size m, and the goal is to decide
whether they have an element in common. It has been
proved that in any multi-round communication protocol, ei-
ther Alice has to send Ω(n) bits to Bob, or Bob has to send
Ω(m) bits to Alice [27]. This holds even for randomized al-
gorithms with a success probability larger than 3/4. We also
note that in the hard instances used in [27], the intersection
size of Alice’s and Bob’s sets is either 0 or 1.

The reduction works as follows. Without loss of generality,
we assume N1 ≤ N2. Given a hard instance of lopsided
set disjointness, we create R1 with N1 = n tuples, whose
join values are the elements of Alice’s set; create R2 with
N2 = m tuples, whose join values are the elements of Bob’s
set. Then solving the join problem also determines whether
the two sets intersect or not, while OUT can only be 1 or 0.

Recall that in the MPC model, the adversary can allocate
the input arbitrarily. We allocate R1 and R2 to the p servers
as follows.

If N2 ≤ p ·N1, we allocate Alice’s set to pN2
IN

servers and

Bob’s set to pN1
IN

servers. Then Alice’s servers must send

Ω(N1) bits to Bob’s servers, which incurs a total load (across
all rounds) of Ω(IN/p) bits per server, or Bob’s servers must
send Ω(N2) bits to Alice’s servers, also incurring a total load
of Ω(IN/p) bits per server.

If N2 > p·N1, then we allocate Bob’s set to one server, and
Alice’s set to the other p − 1 servers. Then Alice’s servers
will send Ω(N1) bits to Bob’s server, or receive Ω(N2) bits,
so the load is Ω(min(N1, N2/p)) = Ω(N1).

4. SIMILARITY JOIN UNDER `1/`∞

In this section, we study similarity joins under the `1
or the `∞ metric. We will actually study a more general
problem, namely the rectangles-containing-points problem.
Here we are given a set R1 of N1 points and a set R2 of
N2 orthogonal rectangles. The goal is to return all pairs
(x, y) ∈ R1 × R2 such that x ∈ y. Note that a similarity
join with `∞ metric is equivalent to a rectangles-containing-
points problem where each side of the rectangles has length
2r. A similarity join with `1 metric in d dimensions can be
reduced to a similarity join with `∞ metric in 2d−1 dimen-
sions, by noticing that for any vector (x1, . . . , xd) ∈ Rd,

d∑
i=1

|xi| = max
(z2,...,zd)∈{−1,1}d−1

|x1 + z2x2 + · · ·+ zdxd|.

In this section and the next, we will assume constant di-
mensions, so that 2d−1 is still a constant. We deal with the
high-dimensional case in Section 6.

4.1 One dimension
We start by considering the one-dimensional case, i.e., the

intervals-containing-points problem. We are given a set of
N1 points and a set of N2 intervals. Set IN = N1 +N2. The
goal to report all (point, interval) pairs such that the point
is inside the interval. Below we describe how to solve this
problem in O(

√
OUT/p+IN/p) load. Note that as with the

equi-join case, if N1 > p·N2 or N2 > p·N1, then the problem
can be trivially and optimally solved with O(min(N1, N2))
load.

Step (1) Computing OUT
As with the equi-join algorithm, we start by computing

the value of OUT. First, we sort all the points and num-
ber them consecutively in the sorted order. Then, for each
interval I = [x, y], we find the predecessor points of x and
y (multi-search). Taking the difference of the numbers as-
signed to the two predecessors will give us the number of
points inside I. Finally, we add up all these counts to get
OUT (special case of sum-by-key).

Step (2) Partially covered slabs

By setting b =
√

OUT/p+ IN/p, we will ensure that the
load of the remaining steps is O(b). We sort all the points
and divide them into slabs of size b. Note that there are
at most p slabs. Consider each interval I in R2. All the
points inside I can be classified into two cases: (1) points
that fall in a slab partially covered by I, and (2) points that
fall in a slab fully covered by I. For example, in Figure 1,
the join between I1 and the points in the leftmost and the
rightmost slab is considered under case (1), while the join
between I1 and the points in the two middle slabs is consid-
ered under case (2). Note that if an interval falls inside a
slab completely, its join with the points in that slab is also
considered under case (1), such as I2 in Figure 1.
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Figure 1: Partially covered and fully covered slabs.

In this step, we deal with the partially covered slabs. For
each interval endpoint, we find which slab it falls into (multi-
search). Then, for each slab, we compute the number of
endpoints falling inside (sum-by-key). Consider each slab i.

Suppose it contains P (i) endpoints. We allocate
⌈
p · P (i)

N2

⌉
servers to compute the join between the b points in the slab
and the intervals with these P (i) endpoints (note that we
need O(p) servers). We simply evenly allocate the P (i) in-
tervals to these servers (use multi-numbering to ensure bal-
ance), and broadcast all the b points to them. The load is
thus

O

(
b+

P (i)

pP (i)/N2

)
= O(b).

Step (3) Fully covered slabs
Let F (i) be the number of intervals fully covering a slab

i. We can compute all the F (i)’s using all prefix-sums al-
gorithm, as follows. If an interval fully covers slabs i, . . . , j,
we generate two pairs (i, 1) and (j+ 1,−1). For each slab i,
we generate a pair (i+ 0.5, 0). Then we sort all these (i, v)
pairs by i and compute the prefix-sums on the v’s.

Now, the full slabs can be dealt with using essentially

the same algorithm. We allocate pi = dp · bF (i)
OUT
e servers to

compute the join (full Cartesian product) of the b points in
slab i and the F (i) intervals fully covering the slab. Since∑
i bF (i) ≤ OUT, this requires at most O(p) servers. We

simply evenly allocate the F (i) intervals to these servers and
broadcast all the b points to them. The load is thus

O

(
b+

F (i)

pbF (i)/OUT

)
= O

(
b+

OUT

pb

)
= O(b).

Theorem 3. There is a deterministic algorithm for the
intervals-containing-points problem that runs in O(1) rounds

with O
(√

OUT
p

+ IN
p

)
load.

4.2 Two and higher dimensions
Next, we generalize the algorithm above to two dimen-

sions. Here we are given a set of N1 points in 2D and a set
of N2 rectangles. Set IN = N1 + N2. The goal is to report
all (point, rectangle) pairs such that the point is inside the
rectangle.

Step (1) Computing OUT
The first step is still to compute the output size OUT.

We first sort all the x-coordinates, including those of the
points and those of the left and right sides of the rectangles.
Then each server defines a vertical slab, containing O(IN/p)
x-coordinates. All joining (point, rectangle) pairs that land
on the same server can be counted and output easily. For

example, in Figure 2, the join results between σ1 and all
the points in slab 1 and slab 7 can be found by those two
servers easily. This also includes rectangles that completely
fall inside a slab, such as σ2.

1 2 3 4 5 6 7 8

σ1
σ2

Figure 2: Rectangles-joining-points.

So we are left to count the joining pairs such that the x-
projection of the rectangle fully spans the slab containing
the point. We impose a binary hierarchy on the p slabs,
and decompose each rectangle into O(log p) canonical slabs.
For example, σ1 in Figure 2 fully spans slabs 2–6, and it is
decomposed into 3 canonical slabs: 2, 3–4, 5–6.

This results in a total of O(N2 log p) canonical rectangles,
each of which corresponds to one canonical slab. For each
canonical slab s, we count its output size OUT(s), using
step (1) of the 1D algorithm. To run all these instances in
parallel, we allocate the servers as follows. For a canoni-
cal slab s that has N2(s) canonical rectangles and consists

of k(s) atomic slabs, we allocate ps =
⌈
p · k(s)IN/p+N2(s)

IN log p

⌉
servers. As each atomic slab is covered by O(log p) canoni-
cal slabs, we have

∑
s k(s) = O(p log p). This step uses O(p)

servers, with each server having load O( k(s)IN/p+N2(s)
ps

) =

O( IN
p

log p). To count the N2(s)’s, we first count F (i), the
number of rectangles fully covering an atomic slab i. This
is the same as the F (i)’s in the 1D case, can be counted
with O(IN/p) load. Then for each atomic slab i, we produce
O(log p) pairs (s, F (i)), one for each canonical slab s that
contains i. This generates O(p log p) such pairs. Finally, we
run sum-by-key on these pairs (using s as the key) to com-
pute N2(s), with load O(p log p/p) = O(log p) = O(IN/p).

Note that this step always has load O( IN
p

log p) regardless
of how large OUT is.

Step (2) Reduction to the 1D case
In this step, we compute, for each rectangle σ, all the re-

sult pairs produced by σ and the points in the slabs fully
spanned by σ. We follow the same approach as in step (1),
but will also need to take into account the output size of each
canonical slab, i.e., OUT(s), when allocating the servers.
More precisely, for a canonical slab s that has N2(s) canon-
ical rectangles and consists of k(s) contiguous slabs, we al-
locate

ps =

⌈
p · OUT(s)

OUT
+ p · k(s)IN/p+N2(s)

IN log p

⌉
servers, and invoke step (2) and (3) of the 1D algorithm
(since OUT(s) is already computed) for all the canonical
slabs in parallel. Note that a point knows which canoni-
cal slabs it falls into, hence which 1D instances it should
participate in, from just its own slab number. For each



canonical slab s, denote the size of its derived instance as
IN(s) = k(s)IN/p+N2(s). Plugging OUT = OUT(s), IN =
IN(s), p = ps into Theorem 3 yields the following result.

Theorem 4. There is a deterministic algorithm for the
rectangles-containing-points problem in 2D that runs in O(1)

rounds with O
(√

OUT
p

+ IN
p

log p
)

load.

The algorithm can also be extended to higher dimensions
using similar ideas, with an extra O(log p) factor for each di-
mension higher. We give the following result without proof.

Theorem 5. There is a deterministic algorithm for the
rectangles-containing-points problem in d dimensions that

runs in O(1) rounds with O
(√

OUT
p

+ IN
p

logd−1 p
)

load.

5. SIMILARITY JOIN UNDER `2

In this section, we consider the similarity join between two
point sets R1 and R2 under the `2 distance in d dimensions.
We first use the lifting transformation [13] to convert the
problem to the halfspaces-containing-points problem in d+1
dimensions. Consider any two points (x1, . . . , xd) ∈ R1 and
(y1, . . . , yd) ∈ R2. The two points join under the `2 distance
if

(x1 − y2)2 + · · ·+ (xd − yd)2 ≤ r2,

or

x2
1 + y2

1 + · · ·+ x2
d + y2

d − 2x1y1 − · · · − 2xdyd − r2 ≥ 0.

We map the point (x1, . . . , xd) to a point in d+ 1 dimen-
sions: (x1, . . . , xd, x

2
1 + · · · + x2

d), and the point (y1, . . . , yd)
to a halfspace in d+ 1 dimensions (zi’s are the parameters):

−2y1z1 − · · · − 2ydzd + zd+1 + y2
1 + · · ·+ y2

d − r2 ≥ 0.

We see that the two d-dimensional points join if and only
if the corresponding (d + 1)-dimensional halfspace contains
the (d+ 1)-dimensional point.

Thus, in the following, we will study the halfspaces-containing-
points problem. Given a set of N1 points and a set of N2

halfspaces in d dimensions, report all the (point, halfspace)
pairs such that the point is inside the halfspace.

A key challenge in this problem, compared with the `1/`∞
case, is that there is no easy way to compute OUT, due to
the non-orthogonal nature of the problem. Knowing the
value of OUT is crucial in the previous algorithms, which is
used to determine the right slab size, which in turn decides
the load.

Our way to get around this problem is based on the obser-
vation that the load is determined by the output-dependent
term only when OUT is sufficiently large. But in this case,
a constant-factor approximation of OUT suffices to guaran-
tee the optimal load asymptotically, and random sampling
can be used to estimate OUT. Random sampling will not
be effective when OUT is small (it is known that to decide
whether OUT = 1 or 0 by sampling requires us to essentially
sample the whole data set), but in that case, the input-
dependent term will dominate the load, and we do not need
to know the value of OUT anyway.

The following notion of a θ-thresholded approximation cap-
tures our needs, which will be used in the development of
the algorithm.

Definition 1. A θ-thresholded approximation of x is an
estimate x̂ such that: (1) if x ≥ θ, then x

2
< x̂ < 2x; (2) if

x < θ, then x̂ < 2θ.

5.1 Useful tools from computational geometry
We will need the following tools from computational ge-

ometry. The first relates thresholded approximations with
random sampling.

Theorem 6 ([23, 17]). For any q > 1, let S be a ran-
dom sample from a set P of n points with |S| = O(q log(q/δ)).

Then with probability at least 1−δ, n · |∆∩S||S| is a n
q

-thresholded

approximation of |∆ ∩ P | for every simplex ∆.

Next, we introduce the partition tree. In particular, we
make use of the b-partial partition tree of Chan [11].

A b-partial partition tree on a set of points is a tree T with
constant fanout, where each leaf stores at most b points, and
each point is stored in exactly one leaf. Each node v ∈ T
(both internal nodes and leaf nodes) stores a cell ∆(v), which
is a simplex that encloses all the points stored at the leaves
below v. For any v, the cells of its children do not overlap.
In particular, this implies that all the leaf cells are disjoint.
Chan [11] presented an algorithm to construct a b-partial
partition tree with the following properties.

Theorem 7 ([11]). Given n points in Rd and a pa-

rameter b < n/ logω(1) n, we can build a b-partial partition
tree with O(n/b) nodes, such that any hyperplane intersects

O((n/b)1−1/d) cells of the tree.

Chan’s construction only guarantees that each leaf cell
contains at most b points but offers no lower bound, while
we will need each leaf cell to have Θ(b) points. This can be
easily achieved, though. Suppose Chan’s b-partial partition
tree has at most c · n/b leaves for some constant c. A leaf
cell is big if it contains at least b/2c points; otherwise small.
Observe that there must be at least n/2b big leaf cells. Then,
we simply combine O(1) small leaf cells with each of the big
leaf cells. This will eliminate all small leaf cells, while each
merged cell consists of a constant number of the original
cells.

5.2 The algorithm
Let q be a parameter such that 1 < q < p. The value of q

will be determined later.

Step (1) Constructing a partition tree
Randomly sample Θ(q log p) points, and send all the sam-

pled points to one server. The server builds a Θ(log p)-
partial partition tree on the sampled points. By Theo-
rem 6 and 7, this tree has O(q) nodes, and with probability

1 − 1/pO(1), every leaf cell contains O(N1/q) points in the

original data set, and any hyperplane intersects O(q1− 1
d )

cells. Then we perform the merging process described af-
ter Theorem 7. Since each merged cell consists of O(1) leaf
cells, each merged cell has constant description complexity
and still contains O(N1/q) points. Note that the merging
process does not increase the total cell count and the number
of cells intersected by any hyperplane.

We broadcast these merged cells to all servers. This step
incurs a load of O(q log p). Henceforth, a “cell” will refer to
such a merged cell.

Similar to the intervals-containing-points algorithm, we
consider the following two cases for all points inside a half-
space: (1) those in cells partially covered by the halfspace,
and (2) those in cells fully covered by the halfspace.



Step (2) Partially covered cells
For each halfspace, we find all the cells ∆ such that its

bounding halfplane intersects ∆. There are O(q1− 1
d ) such

intersecting cells, by Theorem 7. For each cell ∆, we com-
pute the number of halfspaces whose bounding halfplane
intersects ∆, denoted as P (∆). Note that

∑
∆ P (∆) =

O(N2 · q1− 1
d ), so this is a sum-by-key problem on a total

of O(N2 · q1− 1
d ) key-value pairs. The load is thus

O

(
N2

p
· q1− 1

d

)
. (2)

For each cell ∆, we allocate p∆ =

⌈
p · P (∆)

N2·q
1− 1

d

⌉
servers

to compute the join between the Θ(N1/q) points in the cell
and these P (∆) halfspaces that partially cover ∆. The total
number of servers needed is O(p). Invoking the hypercube
algorithm to compute their Cartesian product incurs a load
of

O

√ N1
q
· P (∆)

p∆
+

N1
q

+ P (∆)

p∆


=O

(√
N1N2

pq
1
d

+
N1

q
+
N2q

1− 1
d

p

)
. (3)

Choosing q = p
d

2d−1 balances the terms in (2) and (3),
and the load becomes

O

(
IN

q

)
= O

(
IN

pd/(2d−1)

)
.

Step (3): Fully covered cells
In the intervals-containing-points algorithm, fully covered

cells are dealt in a way similar to the partially covered cells,
but that is because we can compute OUT and set the right
slab size. In this algorithm, we may have used a cell size
(i.e., IN/q) that is too small in relation to OUT. This would
result in too many join results to be produced for the fully
covered cells, exceeding the load target. Our strategy is
thus to first estimate the join size for the fully covered cells
(which is easier than computing OUT), and then rectify the
mistake by restarting the whole algorithm with the right cell
size, if needed.

Step (3.1): Join size estimation
For each cell ∆, let F (∆) be the number of halfspaces fully

covering it, and let K =
∑
4 F (4). Since every point inside

∆ joins with every halfspace fully covering ∆, K · N1/q is
(a constant-factor approximation of) the remaining output
size, and we will be able to estimate K easily.

We first compute an (N2
q

)-thresholded approximation of

F (∆) for each ∆. This can be done by sampling O(q log p)
halfspaces and collecting them on one server. For each cell
∆, we count the number of sampled halfspaces fully covering
it, and scale up appropriately. Standard Chernoff type of
analysis shows that with probability 1− 1/pO(1), we get an
(N2
q

)-thresholded approximation for every F (∆). We use

these approximate F (∆)’s to compute K̂, which is then an
N2-thresholded approximation of the true value of K.

Step (3.2): If K̂ < IN·p
q

Since we have chosen q = o(p), if K̂ < IN·p
q

and K̂ is
an N2-thresholded approximation of K, then we must have

K = O( IN·p
q

). In this case, we just break up each halfspace
that fully covers k cells into k small pieces, which results in
a total of K pieces. Now every piece covers exactly one cell,
thus joins with all the points in that cell. The problem now
reduces to an equi-join on two relations of size N1 and K.
Invoking the hypercube algorithm, the load is

O

(√
OUT

p
+
K +N1

p

)
= O

(√
OUT

p
+

IN

q

)
.

Step (3.3): If K̂ > IN·p
q

In this case, we cannot afford to reduce the problem to
an equi-join, since the halfspaces cover too many cells. This
means we have used a cell size too small. Now, we restart

the whole algorithm, but with a new q′ =
√

IN·pq
K̂

< q. In

the re-execution of the algorithm, we further merge every
O(q/q′) cells into a bigger cell containing Θ(N1/q

′) points.
Now, each newly merged cell has non-constant description
complexity, but since there are only a total of O(q) cells, the
entire mapping from these cells to the newly merged cells can
be broadcast to all servers. Each server can still identify, for
each of its points, which newly merged cell contains it.

Meanwhile, note that if K̂ is an N2-thresholded approx-

imation and K̂ > IN·p
q

, then K̂ must be a constant-factor

approximation of K and we have q′ = Θ

(√
IN·pq
K

)
.

With the new q′, step (1) has load O(q′ log p) = O(q log p);
step (2) has load

O

(
IN

q′

)
= O

(√
IN ·K
pq

)
= O

(√
OUT

p

)
,

where the second step uses the fact that KN1/q ≤ K ·IN/q is
the output size for the fully covered cells in the first attempt
of the algorithm, so must be no larger than OUT.

In the re-execution of the algorithm, let F ′(∆) be the
number of halfspaces covering a newly merged cell ∆, and
let K′ =

∑
∆ F (∆). Observe that each newly merged cell

consists of Θ(q/q′) old cells. This means that we have K′ =
O(Kq′/q), since any halfspace fully covering one newly merged
cell must cover Θ(q/q′) old cells (but not vice versa).

We argue that in the re-execution, we will always have

K̂′ = O( IN·p
q′ ), thus always reaching step (3.2), whose load

is O
(√

OUT
p

+ IN
q′

)
= O

(√
OUT
p

)
. Indeed, we have

K̂′ = O(K′ + IN)

(K̂′ is a N2-thresholded approximation of K′)

= O

(
K · q

′

q
+ IN

)
= O

(
IN · pq
(q′)2

· q
′

q
+ IN

)
= O

(
IN · p
q′

)
.

Therefore, the re-execution, if it takes place, must have

load O
(√

OUT
p

)
. Combining with the load of the first exe-

cution, we obtain the following result.

Theorem 8. There is a randomized algorithm that solves
the halfspaces-containing-points problem in O(1) rounds and
load

O

(√
OUT

p
+ IN/p

d
2d−1 + p

d
2d−1 log p

)
.



The algorithm succeeds with probability at least 1− 1/pO(1).

6. SIMILARITY JOIN IN HIGH DIMENSIONS
So far we have assumed that the dimensionality d is a

constant. The load for both the `1/`∞ algorithm and the `2
algorithm hides constant factors that depend on d exponen-
tially in the big-Oh notation. For the `2 algorithm, even for

constant d, the term O(IN/p
d

2d−1 ) approaches O(IN/
√
p) as

d grows, which is the load for computing the full Cartesian
product.

In this section, we present an algorithm for high-dimensional
similarity joins based on locality sensitive hashing (LSH),
where d is not considered a constant. The nice thing about
the LSH-based algorithm is that its load is independent of d
(we still measure the load in terms of tuples; if measured in
words, then there will be an extra factor of d). The down-
side is that its output-dependent term will not depend on
OUT exactly; instead, it will depend on OUT(cr), which is
the output size when the distance threshold of the similarity
join is made c times larger, for some constant c > 1. LSH is
known to be an approximate solution for nearest neighbor
search, as it may return a neighbor whose distance is c times
larger than the true nearest neighbor. In the case of similar-
ity joins, all answers returned are truly within a distance of
r (since this can be easily verified), but its cost will depend
on OUT(cr) instead of OUT. It is also an approximate solu-
tion, in the sense that it approximates the optimal cost. The
same notion of approximation has also been used for LSH-
based similarity joins in the external memory model [25].

Let dist(·, ·) be a distance function. For c > 1, p1 > p2,
recall that a family H of hash functions is (r, cr, p1, p2)-
sensitive, if for any uniformly chosen hash function h ∈ H,
and any two tuples x, y, we have (1) Pr[h(x) = h(y)] ≥ p1 if
dist(x, y) ≤ r; and (2) Pr[h(x) = h(y)] ≤ p2 if dist(x, y) ≥
cr. In addition, we require H to be monotone, i.e., for a
randomly chosen h ∈ H, Pr[h(x) = h(y)] is a non-increasing
function of dist(x, y). This requirement is not in the stan-
dard definition of LSH, but the LSH constructions for most
metric spaces satisfy this property, include Hamming [19],
`1 [12], `2 [5, 12], Jaccard [9], etc.

The quality of a hash function family is measured by
ρ = log p1

log p2
< 1, which is bounded by a constant that depends

only on c, but not the dimensionality, and ρ ≈ 1/c for many
common distance functions [19, 12, 5]. In a standard hash
family H, p1 and p2 are both constants, but by concatenat-
ing multiple hash functions independently chosen from H,
we can make p1 and p2 arbitrarily small, while ρ = log p1

log p2
is

kept fixed, or equivalently, p2 = p
1/ρ
1 .

In the description of our algorithm below, we leave p1, p2

unspecified, which will be later determined in the analysis.
The algorithm proceeds in the following 3 steps:

(1) Choose 1/p1 hash functions h1, . . . , h1/p1 ∈ H ran-
domly and independently, and broadcast them to all
servers.

(2) For each tuple x, make 1/p1 copies, and attach the pair
(i, hi(x)) to each of these copies, for i = 1, . . . , 1/p1.

(3) Perform an equi-join on all the copies of tuples, treat-
ing the pair (i, hi(x)) as the join value, i.e., two tuples
x, y join if hi(x) = hi(y) for some i. For two joined
tuples x, y, output them if dist(x, y) ≤ r.

Theorem 9. Assume there is a monotone (r, cr, p1, p2)-
sensitive LSH family with ρ = log p1

log p2
. Then there is a ran-

domized similarity join algorithm that runs in O(1) rounds
and with expected load

O

(√
OUT

p1/(1+ρ)
+

√
OUT(cr)

p
+

IN

p1/(1+ρ)

)
.

The algorithm reports each join result with at least constant
probability.

Proof. Correctness of the algorithm follows from stan-
dard LSH analysis: For any two tuples x, y with dist(x, y) ≤
r, the probability that they join on one hi is at least p1.
Across 1/p1 independently hash functions, we have constant
probability that they join on at least one of them.

Below we analyze the load. Step (1) has load O(1/p1);
step (2) is local computation. So we only need to analyze
step (3).

The total number of tuples generated in step (2) isO(N/p1),
which is the input size to the equi-join. The expected output
size is at most

OUT/p1 + OUT(cr) + IN2/p
1−1/ρ
1 .

The first term is for all pairs (x, y) such that dist(x, y) ≤ r.
They could join on every hi. The second term is for (x, y)’s
such that r < dist(x, y) ≤ cr. There are OUT(cr) such pairs,
and each pair has probability at most p1 to join on each hi, so
each pair joins exactly once in expectation. The last term is
for all (x, y)’s such that dist(x, y) > cr. There are N2 such
pairs, and each pair joins with probability at most p2 on
each hi, so they contribute the term IN2p2/p1 = IN2/p1−ρ

1

in expectation.
Plugging these into Theorem 1, and using Jensen’s in-

equality E[
√
X] ≤

√
E[X], the expected load can be bounded

by (the big-Oh of)√
OUT/p1 + OUT(cr) + IN2/p

1−1/ρ
1√

p
+

IN

pp1

≤
√

OUT

pp1
+

√
OUT(cr)

p
+ IN

√
1

pp
1−1/ρ
1

+
IN

pp1
.

Setting p1 = 1/p
ρ

1+ρ balances the last two terms, and we
obtain the claimed bound in the theorem.

Remark. Note that since 0 < ρ < 1, the input-dependent
term is always better than performing a full Cartesian prod-

uct. The output-term O
(√

OUT(cr)
p

)
is also the best we

can achieve for any LSH-based algorithm, by the follow-
ing intuitive argument: Due to its approximation nature,
LSH cannot tell whether the distance between two tuples are
smaller than r or slightly above r. A worst-case scenario is
all the OUT(cr) pairs of tuples have distance slightly above
r but none of them actually joins. Unfortunately, since the
hash functions cannot distinguish the two cases, any LSH-
based algorithm will have to check all the OUT(cr) pairs to
make sure that it does not miss any true join results. Fi-

nally, the term O
(√

OUT

p1/(1+ρ)

)
is also worse than the bound

O
(√

OUT
p

)
we achieved in earlier sections. This is per-

haps the best one can hope for as well, if O(1) rounds are



required: In order to capture all joining pairs, 1/p1 repeti-
tions are necessary, and two very close tuples may join in all
these repetitions, introducing the extra 1/p1 factor in the
output size. If we want to perform all of them in parallel,
there seems to be no way to eliminate the redundancy be-
forehand. Of course, this is just an intuitive argument, not
a formal proof.

7. A LOWER BOUND ON 3-RELATION CHAIN
JOIN

In this section, we consider the possibility of designing
output-optimal algorithms for multi-way joins. We show
that, unfortunately, this is not possible, even for the simplest
multi-way join, a 3-relation equi-join, R1(A,B) 1 R2(B,C) 1
R3(C,D).

The first question is how an output-optimal term would
look like for a 3-relation join. Applying the tuple-based ar-
gument in Section 1.2, each server can potentially produce
O(L3) join results in a single round, hence O(pL3) results
over all p servers in a constant number of round. Thus, an
O((OUT/p)1/3) term is definitely output-optimal.

R1

R2

R3

Figure 3: An instance of a 3-relation chain join.

However, consider the instance shown in Figure 3, where
we use vertices to represent attribute values, and edges for
tuples. On such an instance, the 3-relation join degenerates
into the Cartesian product of R1 and R3. Each server can
produce at most O(L2) pairs of tuples in one round, one from
R1 and one from R3, so we must have O(pL2) = Ω(OUT),

or L = Ω(
√

OUT/p). This means that the best possible

output-dependent term is still O(
√

OUT/p). Below we show
that this is not possible, either, assuming any meaningful
input-dependent term.

Theorem 10. For any tuple-based algorithm computing
a 3-relation chain join, if its load is in the form of

L = O

(
IN

pα
+

√
OUT

p

)
,

for some constant α, then we must have α ≤ 1/2, provided
IN/ log2 IN > cp3 for some sufficiently large constant c.

Note that there is an algorithm for the 3-relation chain
join with load Õ(IN/

√
p) [21], without any output-dependent

term. This means that it is meaningless to introduce the
output-dependent term O(

√
OUT/p).

Proof. Suppose there is an algorithm with a claimed
load L in the form stated above. We will construct a hard
instance on which we must have α ≤ 1/2. Our construction
is probabilistic, and we will show that with high probability,
the constructed instance satisfies our needs.

R1 R2 R3

A B C D

Figure 4: A randomly constructed hard instance.

The construction is illustrated in Figure 4. More precisely,
attributes B and C each have N√

L
distinct values. Each dis-

tinct value of B appears in
√
L tuples in R1, and each dis-

tinct value in C appears in
√
L tuples in R3. Each distinct

value of B and each distinct value of C have a probability of
L
N

to form a tuple in R2. Note that R1 and R3 are determin-
istic and always have N tuples, while R2 is probabilistic with
N tuples in expectation, so E[IN] = 3N . The output size is
expected to be E[OUT] = NL. By the Chernoff inequality,
the probability that IN or OUT deviates from their expec-
tations by more than a constant fraction is exp(−Ω(N)).

We allow all servers to access R2 for free, and only charge
the algorithm for receiving tuples from R1 and R3. More
precisely, we bound the maximum number of join results
a server can produce in a round, if it only receives L tu-
ples from R1 and L tuples from R3. Then we multiply this
number by p, which must be larger than OUT. Note that
this is purely a counting argument; if the same join result
is produced at two or more servers, it is counted multiple
times.

First we argue that a server should load R1 and R3 in
whole groups in order to maximize its output size. Here, a
group means all tuples sharing the same value on B (or C).
Without loss of generality, suppose two groups in R1 are not
loaded in full by a server, say, g1 and g2. If g1 joins more
tuples from R3 that have been loaded by the same server
than g2, then we can always shift tuples from g2 to g1 so as
to produce more (at least not less) join results.

Thus, each server in each round loads
√
L groups from R1

and
√
L groups from R3. Below we show that, on a random

instance constructed as above, with high probability, not
many pairs of groups can join, no matter which subset of
2
√
L groups are loaded. Consider any subset of

√
L groups

from R1 and any subset of
√
L groups from R3. There are

L possible pairs of groups, and each pair has probability L
N

to join, so we expect to see L2

N
pairs to join. By Chernoff

bound, the probability that more than 2L
2

N
pairs join is at

most exp(−Ω(L
2

N
)). There are O

((
N/
√
L
)2
√
L
)

different

choices of
√
L groups from R1 and

√
L groups from R3.

So, the probability that one of them yields more than 2L
2

N



joining groups is at most

O

((
N√
L

)2
√
L
)
· exp

(
−Ω

(
L2

N

))
= exp

(
−Ω

(
L2

N

)
−O

(√
L · logN

))
.

This probability is exponentially small if

L2

N
> c1
√
L · logN,

for some sufficiently large constant c1. Rearranging, we get

N logN <
1

c1
· L

3
2 .

By Theorem 2, we always have L = Ω(N/p), so this is true
as long as

N logN <
1

c2
·
(
N

p

) 3
2

,

for some sufficiently large constant c2, or N/ log2 N > c2p
3.

By a union bound, we conclude that with high probability,
a randomly constructed instance has IN = Θ(N), OUT =
Θ(NL), and on this instance, no matter which groups are

chosen, no more than 2L2

N
pairs of groups can join. Since

each pair of joining groups produces L results, the p servers

in total produce O
(
L3p
N

)
results in a constant number of

rounds. So we have

L3p

N
= Ω(NL),

i.e.,

L = Ω

(
N
√
p

)
.

Suppose an algorithm has a load in the form as stated in
the theorem, then with OUT = Θ(NL), we have

N

pα
+

√
NL

p
= Ω

(
N
√
p

)
.

If α > 1/2, we must have√
NL

p
= Ω

(
N
√
p

)
,

or L = Ω(N), which is an even higher lower bound. Thus
we must have α ≤ 1/2.

8. CONCLUDING REMARKS
Our negative result has ruled out the possibility of having

output-optimal algorithms for any join on 3 or more rela-
tions. However, there is still hope if we sacrifice the output
optimality slightly. For example, what can be done if the
output-dependent term is to be Õ(

√
OUT/p1−δ) for some

small δ?
More broadly, using OUT as a parameter to measure the

complexity falls under the realm of parameterized complex-
ity, or beyond-worst-case analysis in general. This type of
analyses often yields more insights for problems where worst-
case scenarios are rare in practice, such as joins. While OUT
is considered the most natural additional parameter to in-
troduce, other possibilities exist, such as assuming that the

data follows certain parameterized distributions, or the de-
gree (i.e., maximum number of tuples a tuple can join) is
bounded [10, 24], etc.
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I/O-efficient similarity join. In Proc. European
Symposium on Algorithms, 2015.

[26] R. Pagh and F. Silvestri. The input/output
complexity of triangle enumeration. In Proc. ACM
Symposium on Principles of Database Systems, 2014.
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