
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS11

1 Score-matching
We focus on the task of training a generative model approximating a data distribution pD(x). More
particularly, we consider score-based generative models parameterized as pθ(x) = 1

Zθ
exp
(
−Eθ(x)

)
.

Here, Eθ typically corresponds to a neural network, where θ denotes the set of parameters learned
during training; Zθ is a normalizing constant that ensures that pθ(x) is a density.

Last week, we covered a first approach to train the model via maximum likelihood:

max
θ
EpD(x)

[
log pθ(x)

]
. (1)

An alternative approach, named score matching, consists in minimizing the following loss:

min
θ
EpD(x)

[
1
2

∥∥∥sθ(x) − ∇x log pD(x)
∥∥∥2] , where sθ(x) = ∇x log pθ(x).

(a) Qualitatively, explain why the new optimization problem is appropriate to train a generative
model.

DIS11,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

(b) To circumvent this issue, one solution is to rely on noise perturbations of the data. Let x̃ be
a perturbed version of x, sampled from qσ(x̃ | x) = N(x̃; x, σ2I), that is, x̃ follows a normal
distribution, centered at x with covariance σ2I. We consider the modified problem:

min
θ
EpD(x)Eqσ(x̃|x)

[
1
2

∥∥∥sθ(x̃) − ∇x̃ log qσ(x̃ | x)
∥∥∥2] . (2)

Simplify the new problem.

(c) Suggest an algorithm to learn θ.

(d) One limitation of the maximum likelihood based approach from Equation (1) is that it may
learn densities that poorly approximate the true data distribution in low density regions. Jus-
tify why this is the case. Is the same behavior expected with generative models trained with
Equation (2)?

DIS11,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

2 Derivation of the Bellman Equations
This problem attempts to provide some intuitions for Markov Decision Process (MDP). The seem-
ingly simple equations related to MDP sometimes hide subtleties, which we hope to illustrate
through this exercise.

In an MDP, at each time step t, an agent receives a representation of the environment’s state S t ∈ S,
selects an action At ∈ A, which leads the environment to produce a reward Rt+1 ∈ R and a new
state S t+1 ∈ S. To set up an MDP, we need a few definitions. First, we define its dynamics, because
we make the Markov assumption, it suffices to define the one-step dynamics:

p(s′, r|s, a) = P[S t+1 = s′,Rt+1 = r|S t = s, At = a]

Then, we define the return following time t as:

Gt = Rt+1 + γRt+2 + γ
2Rt+3... =

∞∑
k=0

γkRt+k+1 = Rt+1 + γGt+1

where 0 ≤ γ ≤ 1 is the discount rate. We also define a policy that maps from states to the
probabilities of actions:

π(a|s) = P[At = a|S t = s]

Finally, for all s ∈ S, we define the state-value function of the state s under policy π as:

vπ(s) = Eπ[Gt|S t = s] = Eπ[Rt+1 + γGt+1|S t = s]

which represents the expected future return when starting at s and following π thereafter.

Similarly, for all s ∈ S, a ∈ A, the action-value function of taking the action a in state s under
policy π is:

qπ(s, a) = Eπ[Gt|S t = s, At = a] = Eπ[Rt+1 + γGt+1|S t = s, At = a]

A brief note on the notations: the notation Eπ[X|Y = y] is used to indicate the expectation of random
variable X conditioning on the random variable Y with value y, when following the policy π. Often,
X relates to the reward. Implicitly, the expectation is taken over all variables that is random inside
the expectation (except for the ones we condition on), which could include the state, the action and
the reward (at the current and future time points), all of which could be influenced by the policy π.
Derivations in MDP often involves manipulating this expectation.

DIS11,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

(a) To familiarize ourselves with the notations, let’s try to understand the relationships between
these definitions by expressing the following:

• Express the expectation of Rt+1 in terms of π and p(s′, r|s, a)

• Express vπ(s) in terms of qπ and π

• Express qπ(s, a) in terms of vπ and p(s′, r|s, a)

(b) Next, we derive the Bellman equation, which demonstrates that a fundamental property of the
value function is that it satisfies a certain recursive relationship. There are actually two related
notions: the Bellman expectation equation and the Bellman optimality equation. Let’s first
derive the Bellman expectation equation (defined for all s ∈ S):

vπ(s) =
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

DIS11,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

(c) In MDP, we are interested in finding the optimal policy which maximizes the value function.
We define the optimal state-value function as the state-value function under the optimal policy
π∗:

v∗(s) = max
π

vπ(s)

Similarity, the optimal action-value function as:

q∗(s, a) = max
π

qπ(s, a)

Let’s derive the Bellman optimality equation (defined for all s ∈ S):

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)]

Intuitively, this states that the value of a state under an optimal policy equals the expected
return for the best action from that state.

DIS11,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

3 Space Exploration
You are controlling a spacecraft on a mission to explore and gather data from various celestial
bodies in a solar system. The spacecraft can be in one of three states based on its energy lev-
els: ’FullEnergy’, ’LowEnergy’, and ’Depleted’. ’Depleted’ is a terminal state, representing the
spacecraft running out of energy and being unable to continue its mission. We denote the states as
S = {F, L,D}.

At each state (except ”Depleted”), there are two possible actions: ’Conserve’ and ’Explore’. ’Con-
serve’ represents cautious exploration with energy conservation, while ’Explore’ represents ag-
gressive exploration consuming more energy. We denote the actions asA = {C, E}.

The one-step dynamics of the system is defined as the following:

From ’FullEnergy’:

1. Conserve (FullEnergy→ FullEnergy): Probability = 1, Reward = 1 (safe exploration)

2. Explore (FullEnergy→ LowEnergy): Probability = 0.5, Reward = 2 (risky but more reward-
ing exploration)

3. Explore (FullEnergy → FullEnergy): Probability = 0.5, Reward = 2 (successful aggressive
exploration without losing much energy)

From ’LowEnergy’:

1. Conserve (LowEnergy → FullEnergy): Probability = 0.5, Reward = 1 (successful energy
conservation)

2. Conserve (LowEnergy→ LowEnergy): Probability = 0.5, Reward = 1 (maintaining energy
level)

3. Explore (LowEnergy→ Depleted): Probability = 1, Reward = -10 (running out of energy)

In this problem, we will derive the policy iteration and value iteration updates for the MDP above.
As a reminder, policy iteration consists of a policy evaluation step followed by a policy improve-
ment step, defined as:

Policy evaluation: vk+1(s) =
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s′)]

Policy improvement: π′(s) = argmax
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s′)]

Value iteration effectively combines policy improvement and a truncated policy evaluation:

vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s′)]

Note how the policy iteration and value iteration correspond to turning the Bellman expectation
equation and the Bellman optimality equation into the respective updates rules.

DIS11,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

(a) Suppose we initialize with a policy that always conserves regardless of the states, i.e. π0(C|s) =
1, π0(E|s) = 0 for all s. Also, we initialize value functions v0(s) = 0 for all s. Let the discount
rate γ = 0.5. Run policy iteration for two iterations. Does policy iteration converges after two
iterations?

(b) Run value iteration for two iterations. Does it converge after two iterations?

DIS11,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

(c) You might notice how these algorithms all look very similar to each other. This is because,
as we have seen in the previous exercise, they are essentially just different angles of viewing
the same relationship (or different ways of rewriting v and q in relation to each other and
themselves, if you like). In practice, however, policy iteration and value iteration might have
different convergence time, depending on the MDP and the specific implementations. What
are some factors that might affect the convergence time of these algorithms?

DIS11,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

	Score-matching
	Derivation of the Bellman Equations
	Space Exploration

