Recent Comments
Matthew D Cory on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Gil Kalai on Quantum Computers: A Brief Ass… Quantum Computers: A… on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… Gil Kalai on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Gil Kalai on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… -
Recent Posts
- Combinatorial Morning in Tel Aviv, Sunday 28/12/2025
- November’s Lectures, 2025
- Ten Recent Questions for ChatGPT
- A Visit to the Israeli Quantum Computing Center (IQCC)
- Computational Complexity and Explanations in Physics
- Kazhdan Seminar fall 2025 – Starting Today Oct. 19, 2026.
- Explicit Lossless Vertex Expanders!
- Dror Bar-Natan and Roland Van der Veen – A Fast, Strong, and Fun knot invariant!
- Polynomial Bounds for Chowla’s Cosine Problem
Top Posts & Pages
- Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
- Combinatorial Morning in Tel Aviv, Sunday 28/12/2025
- TYI 30: Expected number of Dice throws
- Hong Wang and Joshua Zahl's Solution for the Kakeya Problem in Three Dimensions - Reflections and Links
- What is the maximum number of Tverberg's partitions?
- ChatGPT Meets Elchanan Mossel's Dice Problem
- Navier-Stokes Fluid Computers
- Seven Problems Around Tverberg's Theorem
- Touching Simplices and Polytopes: Perles' argument
RSS
Monthly Archives: August 2010
Faces of Simple 4 Polytopes
In the conference celebrating Klee and Grünbaum’s mathematics at Seattle Günter Ziegler proposed the following bold conjecture about 4 polytopes. Conjecture: A simple 4-polytope with facets has at most a linear number (in ) two dimensional faces which are not 4-gons! If the polytope … Continue reading
Posted in Convex polytopes
6 Comments