Recent Comments
Matthew D Cory on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Gil Kalai on Quantum Computers: A Brief Ass… Quantum Computers: A… on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… Gil Kalai on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Gil Kalai on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… -
Recent Posts
- Combinatorial Morning in Tel Aviv, Sunday 28/12/2025
- November’s Lectures, 2025
- Ten Recent Questions for ChatGPT
- A Visit to the Israeli Quantum Computing Center (IQCC)
- Computational Complexity and Explanations in Physics
- Kazhdan Seminar fall 2025 – Starting Today Oct. 19, 2026.
- Explicit Lossless Vertex Expanders!
- Dror Bar-Natan and Roland Van der Veen – A Fast, Strong, and Fun knot invariant!
- Polynomial Bounds for Chowla’s Cosine Problem
Top Posts & Pages
- Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
- Combinatorial Morning in Tel Aviv, Sunday 28/12/2025
- TYI 30: Expected number of Dice throws
- Hong Wang and Joshua Zahl's Solution for the Kakeya Problem in Three Dimensions - Reflections and Links
- What is the maximum number of Tverberg's partitions?
- ChatGPT Meets Elchanan Mossel's Dice Problem
- Navier-Stokes Fluid Computers
- Seven Problems Around Tverberg's Theorem
- Touching Simplices and Polytopes: Perles' argument
RSS
Monthly Archives: February 2011
The AC0 Prime Number Conjecture
Möbius randomness and computational complexity Last spring Peter Sarnak gave a thought-provoking lecture in Jerusalem. (Here are the very interesting slides of a similar lecture at I.A.S.) Here is a variation of the type of questions Peter has raised. The Prime … Continue reading
The Icosahedron Fights Back
An Extremal Property of the 600-Cell, Poincaré Dodecahedral Sphere, Polytopes with Icosahedral Faces, and CAT People A model of the 600-cell with Dylan Thurston This is an updated version of a post originally posted in February 17 2011. I heard … Continue reading
Posted in Conferences, Convex polytopes
1 Comment
Believing that the Earth is Round When it Matters
A world map. Canada seems much bigger than Israel. Note, however, that in the map countries near the equator looks smaller than they are. Update: The round-earth hypothesis is clearer to the people of New Zealand; see the comments section. … Continue reading
Mathematics to the Rescue: Computing the Root of all Evil
Michael Joswig pointed my attention to the following unbelievable front page of the Frankfurter Allgemeine.