Recent Comments
Matthew D Cory on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Gil Kalai on Quantum Computers: A Brief Ass… Quantum Computers: A… on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… Gil Kalai on November’s Lectures, 202… jamesmessig on November’s Lectures, 202… Gil Kalai on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… Matthew D Cory on November’s Lectures, 202… -
Recent Posts
- Combinatorial Morning in Tel Aviv, Sunday 28/12/2025
- November’s Lectures, 2025
- Ten Recent Questions for ChatGPT
- A Visit to the Israeli Quantum Computing Center (IQCC)
- Computational Complexity and Explanations in Physics
- Kazhdan Seminar fall 2025 – Starting Today Oct. 19, 2026.
- Explicit Lossless Vertex Expanders!
- Dror Bar-Natan and Roland Van der Veen – A Fast, Strong, and Fun knot invariant!
- Polynomial Bounds for Chowla’s Cosine Problem
Top Posts & Pages
- Elchanan Mossel's Amazing Dice Paradox (your answers to TYI 30)
- Combinatorial Morning in Tel Aviv, Sunday 28/12/2025
- TYI 30: Expected number of Dice throws
- Hong Wang and Joshua Zahl's Solution for the Kakeya Problem in Three Dimensions - Reflections and Links
- What is the maximum number of Tverberg's partitions?
- ChatGPT Meets Elchanan Mossel's Dice Problem
- Navier-Stokes Fluid Computers
- Seven Problems Around Tverberg's Theorem
- Touching Simplices and Polytopes: Perles' argument
RSS
Monthly Archives: February 2019
Dan Romik Studies the Riemann’s Zeta Function, and Other Zeta News.
Updates to previous posts: Karim Adiprasito expanded in a comment to his post on the g-conjecture on how to move from vertex-decomposable spheres to general spheres. Some photos were added to the post: Three pictures. Dan Romik on the Zeta … Continue reading
Posted in Number theory, Updates
Tagged Brad Rodgers, Dan Romik, Don Zagier, Ken Ono, Larry Rolen, Michel Griffin, polymath15, Terry Tao, Zeta function
4 Comments
Karim Adiprasito: The g-Conjecture for Vertex Decomposible Spheres
J Scott Provan (site) The following post was kindly contributed by Karim Adiprasito. (Here is the link to Karim’s paper.) Update: See Karim’s comment on the needed ideas for extend the proof to the general case. See also in the … Continue reading
Posted in Combinatorics, Convex polytopes, Geometry, Guest blogger
Tagged g-conjecture, J Scott Provan, Karim Adiprasito, Leonid Gurvits, Lou Billera
9 Comments
Attila Por’s Universality Result for Tverberg Partitions
In this post I would like to tell you about three papers and three theorems. I am thankful to Moshe White and Imre Barany for helpful discussions. a) Universality of vector sequences and universality of Tverberg partitions, by Attila Por; Theorem … Continue reading
Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna Viazovska: Universal optimality of the E8 and Leech lattices and interpolation formulas
Henry Cohn A follow up paper on the tight bounds for sphere packings in eight and 24 dimensions. (Thanks, again, Steve, for letting me know.) For the 2016 breakthroughs see this post, this post of John Baez, this article by Erica Klarreich on … Continue reading
Extremal Combinatorics V: POSETS
This is the remaining post V on partially ordered sets of my series on extremal combinatorics (I,II,III,IV,VI). We will talk here about POSETS – partially ordered sets. The study of order is very important in many areas of mathematics starting … Continue reading
Konstantin Tikhomirov: The Probability that a Bernoulli Matrix is Singular
Konstantin Tikhomirov An old problem in combinatorial random matrix theory is cracked! Singularity of random Bernoulli matrices by Konstantin Tikhomirov Abstract: For each , let be an n×n random matrix with independent ±1 entries. We show that P( is singular}=, … Continue reading