/*------------------------------------------------------------------------- * * bipartite_match.c * Hopcroft-Karp maximum cardinality algorithm for bipartite graphs * * This implementation is based on pseudocode found at: * * http://en.wikipedia.org/w/index.php?title=Hopcroft%E2%80%93Karp_algorithm&oldid=593898016 * * Copyright (c) 2015, PostgreSQL Global Development Group * * IDENTIFICATION * src/backend/lib/bipartite_match.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include #include "lib/bipartite_match.h" #include "miscadmin.h" #include "utils/builtins.h" static bool hk_breadth_search(BipartiteMatchState *state); static bool hk_depth_search(BipartiteMatchState *state, int u, int depth); /* * Given the size of U and V, where each is indexed 1..size, and an adjacency * list, perform the matching and return the resulting state. */ BipartiteMatchState * BipartiteMatch(int u_size, int v_size, short **adjacency) { BipartiteMatchState *state = palloc(sizeof(BipartiteMatchState)); Assert(u_size < SHRT_MAX); Assert(v_size < SHRT_MAX); state->u_size = u_size; state->v_size = v_size; state->matching = 0; state->adjacency = adjacency; state->pair_uv = palloc0((u_size + 1) * sizeof(short)); state->pair_vu = palloc0((v_size + 1) * sizeof(short)); state->distance = palloc((u_size + 1) * sizeof(float)); state->queue = palloc((u_size + 2) * sizeof(short)); while (hk_breadth_search(state)) { int u; for (u = 1; u <= u_size; ++u) if (state->pair_uv[u] == 0) if (hk_depth_search(state, u, 1)) state->matching++; CHECK_FOR_INTERRUPTS(); /* just in case */ } return state; } /* * Free a state returned by BipartiteMatch, except for the original adjacency * list, which is owned by the caller. This only frees memory, so it's optional. */ void BipartiteMatchFree(BipartiteMatchState *state) { /* adjacency matrix is treated as owned by the caller */ pfree(state->pair_uv); pfree(state->pair_vu); pfree(state->distance); pfree(state->queue); pfree(state); } static bool hk_breadth_search(BipartiteMatchState *state) { int usize = state->u_size; short *queue = state->queue; float *distance = state->distance; int qhead = 0; /* we never enqueue any node more than once */ int qtail = 0; /* so don't have to worry about wrapping */ int u; distance[0] = get_float4_infinity(); for (u = 1; u <= usize; ++u) { if (state->pair_uv[u] == 0) { distance[u] = 0; queue[qhead++] = u; } else distance[u] = get_float4_infinity(); } while (qtail < qhead) { u = queue[qtail++]; if (distance[u] < distance[0]) { short *u_adj = state->adjacency[u]; int i = u_adj ? u_adj[0] : 0; for (; i > 0; --i) { int u_next = state->pair_vu[u_adj[i]]; if (isinf(distance[u_next])) { distance[u_next] = 1 + distance[u]; queue[qhead++] = u_next; Assert(qhead <= usize + 2); } } } } return !isinf(distance[0]); } static bool hk_depth_search(BipartiteMatchState *state, int u, int depth) { float *distance = state->distance; short *pair_uv = state->pair_uv; short *pair_vu = state->pair_vu; short *u_adj = state->adjacency[u]; int i = u_adj ? u_adj[0] : 0; if (u == 0) return true; if ((depth % 8) == 0) check_stack_depth(); for (; i > 0; --i) { int v = u_adj[i]; if (distance[pair_vu[v]] == distance[u] + 1) { if (hk_depth_search(state, pair_vu[v], depth + 1)) { pair_vu[v] = u; pair_uv[u] = v; return true; } } } distance[u] = get_float4_infinity(); return false; }