|
184 | 184 | "cell_type": "markdown",
|
185 | 185 | "metadata": {},
|
186 | 186 | "source": [
|
187 |
| - "## Metalens optimization\n", |
| 187 | + "## Performance versus length scale\n", |
188 | 188 | "\n",
|
189 |
| - "To optimize a metalens, you may follow the recipe in the `ceviche_challenge` and `metagrating_challenge` notebooks." |
| 189 | + "Next, we will compute the performance of the reference devices and measure their length scale using the [imageruler](https://github.com/nanocomp/imageruler) package." |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": null, |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [], |
| 197 | + "source": [ |
| 198 | + "import glob\n", |
| 199 | + "import imageruler\n", |
| 200 | + "\n", |
| 201 | + "results = {\"invrsio\": [], \"rasmus\": [], \"mo\": []}\n", |
| 202 | + "\n", |
| 203 | + "for fname in glob.glob(\"../../reference_designs/metalens/Ex/*.csv\"):\n", |
| 204 | + " design = onp.genfromtxt(fname, delimiter=\",\")\n", |
| 205 | + " design = design[:, ::-1]\n", |
| 206 | + "\n", |
| 207 | + " grid_spacing = 0.01 if \"Rasmus\" in fname else 0.02\n", |
| 208 | + " spec = dataclasses.replace(\n", |
| 209 | + " metalens_challenge.METALENS_SPEC,\n", |
| 210 | + " width_lens=design.shape[0] * grid_spacing,\n", |
| 211 | + " width_pml=0.5,\n", |
| 212 | + " thickness_lens=design.shape[1] * grid_spacing,\n", |
| 213 | + " grid_spacing=grid_spacing,\n", |
| 214 | + " )\n", |
| 215 | + " challenge = challenges.metalens(spec=spec)\n", |
| 216 | + " dummy_params = challenge.component.init(jax.random.PRNGKey(0))\n", |
| 217 | + "\n", |
| 218 | + " padding = int(onp.around(spec.width / spec.grid_spacing)) - design.shape[0]\n", |
| 219 | + " padded_design = onp.pad(design, ((padding // 2, padding // 2), (0, 0)), mode=\"edge\")\n", |
| 220 | + " params = dataclasses.replace(dummy_params, array=padded_design)\n", |
| 221 | + "\n", |
| 222 | + " response, aux = challenge.component.response(params)\n", |
| 223 | + "\n", |
| 224 | + " # Compute the length scale in nanometers for the binary design.\n", |
| 225 | + " length_scale = (\n", |
| 226 | + " onp.amin(imageruler.minimum_length_scale(design > 0.5)) * grid_spacing * 1000\n", |
| 227 | + " )\n", |
| 228 | + "\n", |
| 229 | + " if \"Mo\" in fname:\n", |
| 230 | + " key = \"mo\"\n", |
| 231 | + " elif \"Rasmus\" in fname:\n", |
| 232 | + " key = \"rasmus\"\n", |
| 233 | + " elif \"invrsio\" in fname:\n", |
| 234 | + " key = \"invrsio\"\n", |
| 235 | + "\n", |
| 236 | + " results[key].append(\n", |
| 237 | + " {\"response\": response, \"length_scale\": length_scale, \"aux\": aux}\n", |
| 238 | + " )" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "markdown", |
| 243 | + "metadata": {}, |
| 244 | + "source": [ |
| 245 | + "Plotting, we see results very similar to those of figure 3 of \"[Validation and characterization of algorithms and software for photonics inverse design](https://opg.optica.org/josab/abstract.cfm?URI=josab-41-2-A161)\" by Chen et al.\n", |
| 246 | + "\n", |
| 247 | + "Differences are explained by updates to the imageruler algorithm, and the fact that we are using a different simulation algorithm to model the metalenses." |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "code", |
| 252 | + "execution_count": null, |
| 253 | + "metadata": {}, |
| 254 | + "outputs": [], |
| 255 | + "source": [ |
| 256 | + "ax = plt.subplot(111)\n", |
| 257 | + "\n", |
| 258 | + "for key, result in results.items():\n", |
| 259 | + " enhancement = onp.asarray([onp.mean(r[\"response\"].enhancement_ex) for r in result])\n", |
| 260 | + " length_scale = onp.asarray([onp.amin(r[\"length_scale\"]) for r in result])\n", |
| 261 | + " order = onp.argsort(length_scale)\n", |
| 262 | + " ax.plot(length_scale[order], enhancement[order], \"o-\", lw=3, ms=10, label=key)\n", |
| 263 | + "\n", |
| 264 | + "ax.set_xlabel(\"Length scale (nm)\")\n", |
| 265 | + "ax.set_ylabel(\"Wavelength average intensity at focus (a.u.)\")\n", |
| 266 | + "ax.set_ylim((5, 25))\n", |
| 267 | + "_ = plt.legend()" |
190 | 268 | ]
|
191 | 269 | },
|
192 | 270 | {
|
193 | 271 | "cell_type": "markdown",
|
194 | 272 | "metadata": {},
|
195 |
| - "source": [] |
| 273 | + "source": [ |
| 274 | + "## Metalens optimization\n", |
| 275 | + "\n", |
| 276 | + "To optimize a metalens, you may follow the recipe in the `ceviche_challenge` and `metagrating_challenge` notebooks." |
| 277 | + ] |
196 | 278 | }
|
197 | 279 | ],
|
198 | 280 | "metadata": {
|
|
0 commit comments