273273 Note that the entire file is read into a single DataFrame regardless,
274274 use the `chunksize` or `iterator` parameter to return the data in chunks.
275275 (Only valid with C parser)
276- compact_ints : boolean, default False
277- .. deprecated:: 0.19.0
278- Argument moved to ``pd.to_numeric``
279-
280- If compact_ints is True, then for any column that is of integer dtype,
281- the parser will attempt to cast it as the smallest integer dtype possible,
282- either signed or unsigned depending on the specification from the
283- `use_unsigned` parameter.
284- use_unsigned : boolean, default False
285- .. deprecated:: 0.19.0
286- Argument moved to ``pd.to_numeric``
287-
288- If integer columns are being compacted (i.e. `compact_ints=True`), specify
289- whether the column should be compacted to the smallest signed or unsigned
290- integer dtype.
291276memory_map : boolean, default False
292277 If a filepath is provided for `filepath_or_buffer`, map the file object
293278 directly onto memory and access the data directly from there. Using this
@@ -496,8 +481,6 @@ def _read(filepath_or_buffer, kwds):
496481_c_parser_defaults = {
497482 'delim_whitespace' : False ,
498483 'na_filter' : True ,
499- 'compact_ints' : False ,
500- 'use_unsigned' : False ,
501484 'low_memory' : True ,
502485 'memory_map' : False ,
503486 'error_bad_lines' : True ,
@@ -518,13 +501,9 @@ def _read(filepath_or_buffer, kwds):
518501}
519502
520503_deprecated_defaults = {
521- 'compact_ints' : None ,
522- 'use_unsigned' : None ,
523504 'tupleize_cols' : None
524505}
525506_deprecated_args = {
526- 'compact_ints' ,
527- 'use_unsigned' ,
528507 'tupleize_cols' ,
529508}
530509
@@ -596,8 +575,6 @@ def parser_f(filepath_or_buffer,
596575 # Internal
597576 doublequote = True ,
598577 delim_whitespace = False ,
599- compact_ints = None ,
600- use_unsigned = None ,
601578 low_memory = _c_parser_defaults ['low_memory' ],
602579 memory_map = False ,
603580 float_precision = None ):
@@ -662,8 +639,6 @@ def parser_f(filepath_or_buffer,
662639 float_precision = float_precision ,
663640
664641 na_filter = na_filter ,
665- compact_ints = compact_ints ,
666- use_unsigned = use_unsigned ,
667642 delim_whitespace = delim_whitespace ,
668643 warn_bad_lines = warn_bad_lines ,
669644 error_bad_lines = error_bad_lines ,
@@ -1569,11 +1544,6 @@ def _convert_to_ndarrays(self, dct, na_values, na_fvalues, verbose=False,
15691544 if cast_type and not is_dtype_equal (cvals , cast_type ):
15701545 cvals = self ._cast_types (cvals , cast_type , c )
15711546
1572- if issubclass (cvals .dtype .type , np .integer ) and self .compact_ints :
1573- cvals = lib .downcast_int64 (
1574- cvals , parsers .na_values ,
1575- self .use_unsigned )
1576-
15771547 result [c ] = cvals
15781548 if verbose and na_count :
15791549 print ('Filled %d NA values in column %s' % (na_count , str (c )))
@@ -2064,8 +2034,6 @@ def __init__(self, f, **kwds):
20642034 self .converters = kwds ['converters' ]
20652035 self .dtype = kwds ['dtype' ]
20662036
2067- self .compact_ints = kwds ['compact_ints' ]
2068- self .use_unsigned = kwds ['use_unsigned' ]
20692037 self .thousands = kwds ['thousands' ]
20702038 self .decimal = kwds ['decimal' ]
20712039
0 commit comments