|
14 | 14 | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
15 | 15 | 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', |
16 | 16 | 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', |
| 17 | + 'wide_resnet50_2': 'https://s3.amazonaws.com/modelzoo-networks/wide_resnet50_2-2e1fed99.pth.tar', |
| 18 | + 'wide_resnet101_2': 'https://s3.amazonaws.com/modelzoo-networks/wide_resnet101_2-32ee1156.pth.tar', |
17 | 19 | } |
18 | 20 |
|
19 | 21 |
|
@@ -294,3 +296,15 @@ def resnext101_32x8d(pretrained=False, progress=True, **kwargs): |
294 | 296 | kwargs['width_per_group'] = 8 |
295 | 297 | return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], |
296 | 298 | pretrained, progress, **kwargs) |
| 299 | + |
| 300 | + |
| 301 | +def wide_resnet50_2(pretrained=False, progress=True, **kwargs): |
| 302 | + kwargs['width_per_group'] = 64 * 2 |
| 303 | + return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], |
| 304 | + pretrained, progress, **kwargs) |
| 305 | + |
| 306 | + |
| 307 | +def wide_resnet101_2(pretrained=False, progress=True, **kwargs): |
| 308 | + kwargs['width_per_group'] = 64 * 2 |
| 309 | + return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], |
| 310 | + pretrained, progress, **kwargs) |
0 commit comments