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Abstract

We extend the well-known BFGS quasi-Newton method and itsamg-limited variant LBFGS to
the optimization of nonsmooth convex objectives. This isalim a rigorous fashion by generalizing
three components of BFGS to subdifferentials: the localdgatic model, the identification of
a descent direction, and the Wolfe line search conditiong pvéve that under some technical
conditions, the resulting subBFGS algorithm is globallywargent in objective function value.
We apply its memory-limited variant (subLBFGS) lta-regularized risk minimization with the
binary hinge loss. To extend our algorithm to the multiclasd multilabel settings, we develop a
new, efficient, exact line search algorithm. We prove itssisaase time complexity bounds, and
show that our line search can also be used to extend a recwijoped bundle method to the
multiclass and multilabel settings. We also apply the diogefinding component of our algorithm
to Li-regularized risk minimization with logistic loss. In alidse contexts our methods perform
comparable to or better than specialized state-of-theedwers on a number of publicly available
data sets. An open source implementation of our algoritisrfreely available.

Keywords: BFGS, variable metric methods, Wolfe conditions, subgmailirisk minimization,
hinge loss, multiclass, multilabel, bundle methods, BMRMGAS, OWL-QN

1. Introduction
The BFGS quasi-Newton method (Nocedal and Wright, 1999) and its melmdtgd LBFGS vari-

ant are widely regarded as the workhorses of smooth nonlinear optimizht®to their combi-
nation of computational efficiency and good asymptotic convergenceen@vsmooth objective
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Figure 1: Geometric illustration of the Wolfe conditions (4) and (5).

functionJ : RY — R and a current iteratey ¢ Rd, BFGS forms a local quadratic model &f
Qi(p) = J(wy) +3p' B p+0I(wr)'p, (1)

whereB; > 0 is a positive-definite estimate of the inverse Hessiah ahd(1J denotes the gradient.
Minimizing Q;(p) gives the quasi-Newton direction

p = —BdJI(wy), (2)
which is used for the parameter update:

W1 = Wi + NePr- 3)
The step sizg; > 0 is normally determined by a line search obeying the Wolfe (1969) conditions:

J(wit1) < J(wt)—i—Cll’]tDJ(wt)Tpt (sufficient decrease) 4)
and 0J(wiy1) pr > c0J(wy)'py  (curvature) (5)

with 0 < ¢; < ¢ < 1. Figure 1 illustrates these conditions geometrically. The magixs then
modified via the incremental rank-two update

Bii1= (I —pesy )Bi(I—pryesi’ ) +pesesy (6)

wheres; := w1 — wy andy; ;= 0J(wr1) — OJ(wy) denote the most recent step along the opti-
mization trajectory in parameter and gradient space, respectivelyard(y;"s;) 1. The BFGS
update (6) enforces the secant equaff§n,y; = s;. Given a descent directign, the Wolfe con-
ditions ensure thatvt) sy > 0 and henceéBy - 0 = (Vt) B; >~ 0.

Limited-memory BFGS (LBFGS, Liu and Nocedal, 1989) is a variant of BF@Sghed for
high-dimensional optimization problems where @@?) cost of storing and updating; would be
prohibitive. LBFGS approximates the quasi-Newton direction (2) directiynfthe lasim pairs of
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st andy; via a matrix-free approach, reducing the cosD{and) space and time per iteration, with
mfreely chosen.

There have been some attempts to apply (L)BFGS directly to nonsmooth optimizatidams,
in the hope that they would perform well on nonsmooth functions that aneezand differentiable
almost everywhere. Indeed, it has been noted that in cases wher® B€sp., LBFGS) does not
encounter any nonsmooth point, it often converges to the optimum (Lenahré&82; Lewis and
Overton, 2008a). However, LBRn and Mtek (1999), Haarala (2004), and Lewis and Overton
(2008b) also report catastrophic failures of (L)BFGS on nonsmoatttifons. Various fixes can be
used to avoid this problem, but only in an ad-hoc manner. Thereforgraient-based approaches
such as subgradient descent (Nesiiid Bertsekas, 2000) or bundle methods (Joachims, 2006; Franc
and Sonnenburg, 2008; Teo et al., 2010) have gained considettdsigan for minimizing nons-
mooth objectives.

Although a convex function might not be differentiable everywhere pgsadient always exists
(Hiriart-Urruty and Lemagchal, 1993). Letv be a point where a convex functidns finite. Then
a subgradient is the normal vector of any tangential supporting hyperplia) at w. Formally,g
is called a subgradient af at w if and only if (Hiriart-Urruty and Lema&chal, 1993, Definition
VI.1.2.1)

(V') J(w') = I(w)+(w' —w)'g. (7)

The set of all subgradients at a point is called the subdifferential, arehisteddJ(w). If this set

is not empty ther is said to besubdifferentiable atv. If it contains exactly one element, that is,
dJ(w) = {0J(w)}, thend is differentiableat w. Figure 2 provides the geometric interpretation of
().

The aim of this paper is to develop principled and robust quasi-Newton aeethat are amenable
to subgradients. This results in subBFGS and its memory-limited variant sUb&Bt#wo new sub-
gradient quasi-Newton methods that are applicable to nonsmooth conuenzagpion problems. In
particular, we apply our algorithms to a variety of machine learning problexmoigng knowl-
edge about the subdifferential of the binary hinge loss and its gendiatigdo the multiclass and
multilabel settings.

In the next section we motivate our work by illustrating the difficulties of LBFRsB$ionsmooth
functions, and the advantage of incorporating BFGS’ curvature estintatéhimparameter update.
In Section 3 we develop our optimization algorithms generically, before disaytheir application
to Lo-regularized risk minimization with the hinge loss in Section 4. We describe a fierest
algorithm to identify the nonsmooth points of a one-dimensional pointwise maxinfumear
functions in Section 5, then use it to develop an exact line search thaidextem optimization
algorithms to the multiclass and multilabel settings (Section 6). Section 7 comparesranasts
our work with other recent efforts in this area. We report our experiati@asults on a number of
public data sets in Section 8, and conclude with a discussion and outlooktiorSec

2. Motivation

The application of standard (L)BFGS to nonsmooth optimization is problematie #icquasi-
Newton direction generated at a honsmooth point is not necessarily andeliection. Never-
theless, BFGS’ inverse Hessian estimate can provide an effective mioitiel overall shape of a
nonsmooth objective; incorporating it into the parameter update can thetefobeneficial. We
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Figure 2: Geometric interpretation of subgradients. The dashed linesrayentsl to the hinge
function (solid blue line); the slopes of these lines are subgradients.

discuss these two aspects of (L)BFGS to motivate our work on developimgnasi-Newton meth-
ods that are amenable to subgradients while preserving the fast ceneergroperties of standard
(L)BFGS.

2.1 Problems of (L)BFGS on Nonsmooth Objectives

Smoothness of the objective function is essential for classical (L)BF&ause both the local
guadratic model (1) and the Wolfe conditions (4, 5) require the existdribe gradient]J at every
point. As pointed out by Hiriart-Urruty and Len&uohal (1993, Remark VIII.2.1.3), even though
nonsmooth convex functions are differentiable everywhere except st of Lebesgue measure
zero, it is unwise to just use a smooth optimizer on a nonsmooth convex proiiéen the as-
sumption that “it should work almost surely.” Below we illustrate this on both aet@mple and
real-world machine learning problems.

2.1.1 A Toy EXAMPLE

The following simple example demonstrates the problems faced by BFGS witkingvavith a
nonsmooth objective function, and how our subgradient BFGS (sulsBR@thod (to be introduced
in Section 3) with exact line search overcomes these problems. Considaskha minimizing

f(x,y) = 10[x| +y| (8)

with respect tocandy. Clearly, f (x,y) is convex but nonsmooth, with the minimum located®0)
(Figure 3, left). It is subdifferentiable wheneveory is zero:

dxf(0,-) =[~10,10] and d,f(-,0) = [—1,1].

We call such lines of subdifferentiability in parameter sphicges
We can minimize (8) with the standard BFGS algorithm, employing a backtrackingdareh
(Nocedal and Wright, 1999, Procedure 3.1) that starts with a step sizelibgs the curvature
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Figure 3: Left: the nonsmooth convex function (8); optimization trajectorBleGS with inexact
line search (center) and subBFGS (right) on this function.

condition (5), then exponentially decays it until both Wolfe conditions (4r8) satisfied. The
curvature condition forces BFGS to jump across at least one hinge, ikusgy that the gradient
displacement vectay; in (6) is non-zero; this prevents BFGS from diverging. Moreover, witbh
aninexactline search BFGS will generally not step on any hinges directly, thus agpi@inan
ad-hoc manner) the problem of non-differentiability. Although this algoritfuickly decreases the
objective from the starting poirtl, 1), it is then slowed down by heavy oscillations around the
optimum (Figure 3, center), caused by the utter mismatch between BFGSatjuadodel and the
actual function.

A generally sensible strategy is to use an exact line search that findstimeiopalong a given
descent direction (cf. Section 4.2.1). However, this line optimum will oftenria binge (as it does
in our toy example), where the function is not differentiable. If an arhyitsaibgradient is supplied
instead, the BFGS update (6) can produce a search direction whicteislestent direction, causing
the next line search to fail. In our toy example, standard BFGS with exactdiaech consistently
fails after the first step, which takes it to the hingexat 0.

Unlike standard BFGS, our subBFGS method can handle hinges and #muthesbenefits of
an exact line search. As Figure 3 (right) shows, once the first iteratisnbl8FGS lands it on the
hinge atx = 0, its direction-finding routine (Algorithm 2) finds a descent direction ferribxt step.
In fact, on this simple example Algorithm 2 yields a vector with zermomponent, which takes
SubBFGS straight to the optimum at the second $tep.

2.1.2 TryrPicAL NONSMOOTHOPTIMIZATION PROBLEMS IN MACHINE LEARNING

The problems faced by smooth quasi-Newton methods on nonsmooth olgeataveot only en-
countered in cleverly constructed toy examples, but also in real-worlicappns. To show this,
we apply LBFGS td_,-regularized risk minimization problems (30) with binary hinge loss (31), a
typical nonsmooth optimization problem encountered in machine learning. iBgudtticular ob-
jective function, an exact line search is cheap and easy to computedsten3t.2.1 for details).
Figure 4 (left & center) shows the behavior of LBFGS with this exact lirrde (LBFGS-LS)

1. We set; = 102 in (4) andc, = 0.8 in (5), and used a decay factor of 0.9.
2. This is achieved for any choice of initial subgradight (Line 3 of Algorithm 2).
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Figure 4: Performance of subLBFGS (solid) and standard LBFGS wébtggdashed) and inexact
(dotted) line search methods on samipjeregularized risk minimization problems with
the binary (left and center) and multiclass hinge losses (right). LBFGS wihtdine
search (dashed) fails after 3 iterations (markec pen the Leukemia data set (left).

on two data sets, namely Leukemia and Real%ithcan be seen that LBFGS-LS converges on
Real-sim but diverges on the Leukemia data set. This is because usixgcirliee search on a
nonsmooth objective function increases the chance of landing on notfspuiots, a situation that
standard BFGS (resp., LBFGS) is not designed to deal with. To pré\BFGS’ sudden break-
down, a scheme that actively avoids honsmooth points must be used. €meassibility is to
use an inexact line search that obeys the Wolfe conditions. Here weansefficient inexact line
search that uses a caching scheme specifically designed-fegularized hinge loss (cf. end of
Section 4.2). This implementation of LBFGS (LBFGS-ILS) converges on Hath sets shown
here but may fail on others. It is also slower, due to the inexactness ofatsdarch.

For the multiclass hinge loss (42) we encounter another problem: if we followdthal practice
of initializing w = 0, which happens to be a non-differentiable point, then LBFGS stalls. Ope wa
to get around this is to force LBFGS to take a unit step along its search diraotiescape this
nonsmooth point. However, as can be seen on the Letter daia §&gure 4 (right), such an ad-hoc
fix increases the value of the objective abdy@) (solid horizontal line), and it takes several CPU
seconds for the optimizers to recover from this. In all cases shown ird=iguour subgradient
LBFGS (subLBFGS) method (as will be introduced later) performs corbpata or better than the
best implementation of LBFGS.

2.2 Advantage of Incorporating BFGS’ Curvature Estimate

In machine learning one often encountegsregularized risk minimization problems (30) with var-
ious hinge losses (31, 42, 55). Since the Hessian of those objectstgoiumat differentiable points
equalsAI (whereA is the regularization constant), one might be tempted to argue that for such
problems, BFGS’ approximatiof; to the inverse Hessian should be simply seAtdI. This
would reduce the quasi-Newton directipp= — Bt gt, g € 0J(wy) to simply a scaled subgradient
direction.

To check if doing so is beneficial, we compared the performance of blwBtGS method with
two implementations of subgradient descent: a vanilla gradient descentdr{ddrmoted GD) that

3. Descriptions of these data sets can be found in Section 8.
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Figure 5: Performance of subLBFGS, GD, and subGD on salppiegularized risk minimization
problems with binary (left), multiclass (center), and multilabel (right) hingedsss
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Figure 6: BFGS’ quadratic approximation to a piecewise linear function (ki) its estimate of
the gradient of this function (right).

uses a random subgradient for its parameter update, and an imprdgrddient descent method
(denoted subGD) whose parameter is updated in the direction produoegr lljrection-finding
routine (Algorithm 2) withB; = I. All algorithms used exact line search, except that GD took
a unit step for the first update in order to avoid the nonsmooth point 0 (cf. the discussion

in Section 2.1). As can be seen in Figure 5, on all sarhpleegularized hinge loss minimization
problems, subLBFGS (solid) converges significantly faster than GD @adied subGD (dashed).
This indicates that BFGSB; matrix is able to model the objective function, including its hinges,
better than simply setting; to a scaled identity matrix.

We believe that BFGS’ curvature update (6) plays an important role in tHferpgnce of
subLBFGS seen in Figure 5. Recall that (6) satisfies the secant conBitiaw; = s;, wheres; and
y; are displacement vectors in parameter and gradient space, redpedthe secant condition in
fact implements dinite differencingscheme: for a one-dimensional objective functionR — R,
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we have
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Although the original motivation behind the secant condition was to approxithatieverse Hes-
sian, the finite differencing scheme (9) allows BFGS to model the global wwevéi.e., overall
shape) of the objective function from first-order information. For instarrigure 6 (left) shows
that the BFGS quadratic mode{l) fits a piecewise linear function quite well despite the fact that
the actual Hessian in this case is zero almost everywhere, and infinite (imttjeat nonsmooth
points. Figure 6 (right) reveals that BFGS captures the global trend gf#itgent rather than its in-
finitesimal variation, that is, the Hessian. This is beneficial for nonsmoottigms, where Hessian
does not fully represent the overall curvature of the objective functio

3. Subgradient BFGS Method

We modify the standard BFGS algorithm to derive our new algorithm (sulBR®jorithm 1) for
nonsmooth convex optimization, and its memory-limited variant (SUbLBFGS).ntaulifications
can be grouped into three areas, which we elaborate on in turn: gemgydhe local quadratic
model, finding a descent direction, and finding a step size that obeysgyeadidnt reformulation
of the Wolfe conditions. We then show that our algorithm’s estimate of the ievdessian has a
bounded spectrum, which allows us to prove its convergence.

Algorithm 1 Subgradient BFGS (SubBFGS)
1: Initialize:t:=0,wp=0,By =1
2: Set: direction-finding toleranae> 0, iteration limitkmax > 0,
lower bounch > 0 on Z% (cf. discussion in Section 3.4)
3: Compute subgradiegp € 0J(wo)
4: while not convergedio

5. pt =descentDirection(gi,€, Kmax) (Algorithm 2)

6: if py =failurethen

7 Returnwy

8: endif

9: Findn; that obeys (23) and (24) (e.g., Algorithm 3 or 5)
10: St = NtPt

11: Wiy = Wt + St
12:  Choose subgradiept.; € 0J(wi 1) : 8 (gtr1—gt) >0
13: Yt '=gt+1— gt

14: st =8+ max(O h— 5;71%) Yt (ensuresr;yt > h)
. \ 9 ytTyl ytTyt -

15:  UpdateB;. 1 via (6)

16: t:=t+1

17: end while

4. For ease of exposition, the model was constructed at a differentialnie
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Figure 7: Left: selecting arbitrary subgradients yields many possiblergti@adnodels (dotted
lines) for the objective (solid blue line) at a subdifferentiable point. Theetsodere
built by keepingB; fixed, but selecting random subgradients. Right: the tightest pseudo-
guadratic fit (10) (bold red dashes); note that it is not a quadratic.

3.1 Generalizing the Local Quadratic Model

Recall that BFGS assumes that the objective funcliisdifferentiable everywhere so that at the
current iteratew; it can construct a local quadratic model (1)J¢tv; ). For a nonsmooth objective
function, such a model becomes ambiguous at non-differentiable poigts€F, left). To resolve
the ambiguity, we could simply replace the gradiéld{w) in (1) with an arbitrary subgradient
gt € 0J(wy). However, as will be discussed later, the resulting quasi-Newton diregtien — B; g

is not necessarily a descent direction. To address this fundamental ngogedinlem, we first
generalize the local quadratic model (1) as follows:

Qi(p) := I(wr) +M(p), where

Mi(p) == 3p'B;'p + sup g'p. (10)
g<od(wr)

Note that wherd is differentiable, (10) reduces to the familiar BFGS quadratic model (1joAt
differentiable points, however, the model is no longer quadratic, as firermum may be attained
at different elements adJ(wy) for different directiong. Instead it can be viewed as the tightest
pseudo-quadratic fit td at w; (Figure 7, right). Although the local model (10) of subBFGS is
nonsmooth, it only incorporates non-differential points present atutrerwt location; all others are
smoothly approximated by the quasi-Newton mechanism.

Having constructed the model (10), we can mininfxép), or equivalentlyM;(p):

min { 2p'B;'p + sup g'p (11)
peR? gedd(ur)

to obtain a search direction. We now show that solving (11) is closely refatéte problem of
finding anormalized steepest descelntection. A normalized steepest descent direction is defined
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as the solution to the following problem (Hiriart-Urruty and Le&ehral, 1993, Chapter VIII):

min J'(wy, p) st lpll <1, (12)
peR
where
- J(wi+np) — I(wr)
Y (wy, p) :=Ilim
(wr. 2) =g n
is the directional derivative af at wy in directionp, and|| - ||| is a norm defined o". In other

words, the normalized steepest descent direction is the direction of édurarm along which
the maximum rate of decrease in the objective function value is achieved.g thenproperty:
J(wy, p) = su%eaj(wt)ng (Bertsekas, 1999, Proposition B.24.b), we can rewrite (12) as:

min supg'p st |lpll<1 (13)
PER” gedd(wr)

If the matrix B; > 0 as in (11) is used to define the nofjn|| as

llpll*:= "B *p, (14)

then the solution to (13) points to the same direction as that obtained by minimizingseudo-
guadratic model (11). To see this, we write the Lagrangian of the constiaamimization problem
(13):

L(p,a) :==ap'B{'p —a + sup g'p
g<0J(ut)
= Ip'(2aBY)p —a + sup g'p, (15)
geod(wr)

wherea > 0 is a Lagrangian multiplier. It is easy to see from (15) that minimizing the Lagman
functionL with respect tg is equivalent to solving (11) witB;* scaled by a scalar2 implying
that the steepest descent direction obtained by solving (13) with the wetigbiten (14) only differs
in length from the search direction obtained by solving (11). Therefaue,search direction is
essentially an unnomalized steepest descent direction with respect toigieadenorm (14).

Ideally, we would like to solve (11) to obtain the best search direction. Thgemerally in-
tractable due to the presence a supremum over the entire subdifferenfid(;). In many ma-
chine learning problems, howev@d(w) has some special structure that simplifies the calculation
of that supremum. In particular, the subdifferential of all the problemsidened in this paper is
a convex and compact polyhedron characterised as the convex litsleafreme points. This dra-
matically reduces the cost of calculating gg@(m)ng since the supremum can only be attained
at an extreme point of the polyhedral 88tw) (Bertsekas, 1999, Proposition B.21c). In what fol-
lows, we develop an iterative procedure that is guaranteed to find aMeason descent direction,
assuming an oracle that supplies argg%ﬂm)ng for a given directiorp € RY. Efficient oracles
for this purpose can be derived for many machine learning settings; avidps such oracles for
Lo-regularized risk minimization with the binary hinge loss (Section 4.1), multiclagsradtilabel
hinge losses (Section 6), ahg-regularized logistic loss (Section 8.4).
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Algorithm 2 p; = descentDirection(g(l),s, Kmax)

1: input (sub)gradieny(1> € 0J(wy), tolerancee > 0, iteration limitknax > O,
and an oracle to calculate arg gup ., g p for any givenw andp
output descent directiom
Initialize: i = 1, gV = g, p) = —B,g
g? =arg SUBcas(wn) g pY
e = pWTg@ _pWTg1)
while (gD Tp® > 0 orel) > ¢) ande) > 0 andi < kmax do
i i+1)\T i
7. W i=min [1, (g(i)Ei((?;?)(T;t)(J%g;(i+1)):|; see (97)
B g0 = (1 p0)g0) g
o p"V = (1-p)p") —r Big' Y, see (76)
10: g2 = argsupcsyi g P
11:  gli+D) -— minj<(i41) [p(J)Tg(JH) _ %(p(J)Tg_(J) +p(l+1)Tg—(l+1))]
12: i:=i+1
13: end while
14: py = argmin ; M (p()))
15: if SURycay(uy) 9 Pt > Othen
16:  return failure;
17: else
18: return px.
19: end if

3.2 Finding a Descent Direction

A direction p; is a descent direction if and only ig'p; < 0 Vg € 0J(w) (Hiriart-Urruty and
Lemagchal, 1993, Theorem VIII.1.1.2), or equivalently

sup g'pr < O. (16)
g€0d(wr)

For a smooth convex function, the quasi-Newton direction (2) is alwagseet direction because
0J(wy) 'pr = —0J(wy) 'Bi0I(wy) < O

holds due to the positivity aB;.

For nonsmooth functions, however, the quasi-Newton diregias= — By g; for a giveng; €
0J(wt) may not fulfill the descent condition (16), making it impossible to find a steprgize0
that obeys the Wolfe conditions (4, 5), thus causing a failure of the linelse®/e now present an
iterative approach to finding a quasi-Newtbescentirection.

Our goal is to minimize the pseudo-quadratic model (10), or equivalently miniMizp).
Inspired by bundle methods (Teo et al., 2010), we achieve this by minimizimgegdower bounds
of M;(p) that are designed to progressively approlp) over iterations. At iterationwe build
the following convex lower bound ol (p):

M (p) := 3p B 'p + supgp, 17)

j<i
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wherei, j € N andg) € dJ(w) Vj <i. Given ap() € RY the lower bound (17) is successively
tightened by computing

g := argsupg'p!", (18)
g€0d(un)

such thaM{” (p) < M{™(p) < Mi(p) Vp € RY. Here we seg® € 9J(wy) arbitrarily, and assume
that (18) is provided by an oracle (e.g., as described in Section 4.1pN® mianRd Mt(l)(p), we

rewrite it as a constrained optimization problem:

min (3p"B'p+8) st g0 Tp<E vi<i (19)

This problem can be solved exactly via quadratic programming, but doingagancur substantial
computational expense. Instead we adopt an alternative approadri{ig 2) which does not
solve (19) to optimality. The key idea is to write the proposed descent direatiberationi + 1
as a convex combination @f') and—Byg(+ (Line 9 of Algorithm 2); and as will be shown in
Appendix B, the returned search direction takes the form

Dbt = _Bt.av

whereg; is a subgradient idJ(wy) that allowsp to satisfy the descent condition (16). The opti-
mal convex combination coefficiept can be computed exactly (Line 7 of Algorithm 2) using an
argument based on maximizing the dual objectiv®lgfp); see Appendix A for details.

The weak duality theorem (Hiriart-Urruty and Lerdahal, 1993, Theorem XI1.2.1.5) states that
the optimal primal value is no less than any dual value, that B;(ié) is the dual ofV(p), then
min,,_gs Mt (p) > Dt(c) holds for all feasible dual solutiors. Therefore, by iteratively increasing
the value of the dual objective we close the gap to optimality in the primal. Bastniscargument,
we use the following upper bound on the duality gap as our measure ofgrg0g

el) = min [p(mg““) — 3V TgV+plTgh)| > min Mi(p) — D(ec"), (20)
= pe

whereg? is an aggregated subgradient (Line 8 of Algorithm 2) which lies in the cohwdl of

g\ € dJ(wy) ¥j <i, anda* is the optimal dual solution; Equations 77-79 in Appendix A provide
intermediate steps that lead to the inequality in (20). Theorem 7 (AppendikRdyssthate(!) is
monotonically decreasing, leading us to a practical stopping criterion (LofeAégorithm 2) for
our direction-finding procedure.

A detailed derivation of Algorithm 2 is given in Appendix A, where we alsoverthat at a non-
optimal iterate a direction-finding toleranee> 0 exists such that the search direction produced by
Algorithm 2 is a descent direction; in Appendix B we prove that Algorithm2/eoges to a solution
with precisione in O(1/¢) iterations. Our proofs are based on the assumption that the spectrum
(eigenvalues) of BFGS’ approximatids; to the inverse Hessian is bounded from above and below.
This is a reasonable assumption if simple safeguards such as those etbscribection 3.4 are
employed in the practical implementation.
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3.3 Subgradient Line Search

Given the current iteratey; and a search directign, the task of a line search is to find a step size
n > 0 which reduces the objective function value along thedire- np;:

minimize ®(n) := J(w +Npt)- (21)
Using the chain rule, we can write

o0d(n) := {g'pt 1 g € 0(wi+npy)}. (22)

Exact line search finds the optimal step sigeby minimizing®(n), such that Gc 0P (n*); inexact
line searches solve (21) approximately while enforcing conditions degignensure convergence.
The Wolfe conditions (4) and (5), for instance, achieve this by guasarge sufficient decrease in
the value of the objective and excluding pathologically small step sizesatagly (Wolfe, 1969;
Nocedal and Wright, 1999). The original Wolfe conditions, howeeguire the objective function
to be smooth; to extend them to nonsmooth convex problems, we proposéadahénip subgradient
reformulation:

J(wip1) < I(wy) + cane sup g'pe (sufficient decrease) (23)
ge€od(uy)

and sup g'"'pt > ¢ sup g'pr,  (curvature) (24)
g'€dd(wti1) geodd(wr)

where 0< ¢; < ¢z < 1. Figure 8 illustrates how these conditions enforce acceptance of imi@h-tr
step sizes that decrease the objective function value. In Appendix Grmally show that for any

given descent direction we can always find a positive step size thdiesa(®3) and (24). Moreover,
Appendix D shows that the sufficient decrease condition (23) pro@desessary condition for the
global convergence of subBFGS.

Employing an exact line search is a common strategy to speed up conwergatit drastically
increases the probability of landing on a non-differentiable point (as inr€ig, left). In order to
leverage the fast convergence provided by an exact line searmuast therefore use an optimizer
that can handle subgradients, like our subBFGS.

A natural question to ask is whether the optimal step gizebtained by an exact line search
satisfies the reformulated Wolfe conditions (resp., the standard WolfétiomsdvhenJ is smooth).
The answer is no: depending on the choicei* may violate the sufficient decrease condition
(23). For the function shown in Figure 8, for instance, we can incréasealue ofc; such that
the acceptable interval for the step size exclugiedn practice one can set to a small value, for
example, 104, to prevent this from happening.

The curvature condition (24), on the other hand, is always satisfieq bgs long ag is a
descent direction (16):

sup g''pt = supg > 0> supgp
g'eI(w+n*pr) gead(n*) geod(ur)

because @ 0d(n*).
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Figure 8: Geometric illustration of the subgradient Wolfe conditions (23)(24§l Solid disks are
subdifferentiable points; the slopes of dashed lines are indicated.

3.4 Bounded Spectrum of SUbBFGS’ Inverse Hessian Estimate

Recall from Section 1 that to ensure positivity of BFGS’ estimBteof the inverse Hessian, we
must havevt) s,y > 0. Extending this condition to nonsmooth functions, we require

(wt+1 — wt)T(gH_l - gt) >0, where gi+1 € 0J(wt+1) and gt € OJ(wt) (25)

If Jis strongly conve®,andwy_ 1 # wy, then (25) holds for any choice gf,; andg;.® For general
convex functionsg; 1 need to be chosen (Line 12 of Algorithm 1) to satisfy (25). The existehce o
such a subgradient is guaranteed by the convexity of the objectivBdongo see this, we first use
the fact thatipy = w1 — wy andn; > 0 to rewrite (25) as

P gir1> p{ gt Where g1 € 0J(wiy1) and g; € 0J(wy). (26)

It follows from (22) that both sides of inequality (26) are subgradieh®(@)) atn; and 0, respec-
tively. The monotonic property @®(n) given in Theorem 1 (below) ensures tigltg; ;1 is no less
thanp, g for any choice ofg;. 1 andgt, that is,
inf  plg > sup p/g. (27)
gE@J('le) gea.](u)[)
This means that the only case where inequality (26) is violated is when bothdé&(&¥ are equal,
and

gi-1= arginf g'p and g = argsupg ' pr,
geoI(wi1) geod(ur)

that is, in this cas@, gt 1 = p{ g:. To avoid this, we simply need to set, ; to a different subgra-
dient indJ(wty1).

5. If Jis strongly convex, thefigz — g1) T (w2 — w1) > ¢|jwa — w1|?, with ¢>0, gi € aJ(wj), i =1,2.
6. We found empirically that no qualitative difference between usingaamnsubgradients versus choosing a particular
subgradient when updating tt#& matrix.
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Theorem 1 (Hiriart-Urruty and Lemagchal, 1993, Theorem 1.4.2.1)
Let @ be a one-dimensional convex function on its domain, @h(n) is increasing in the sense
that g < g> whenever g€ dd(n1), g2 € 0P(n2), andni < na.

Our convergence analysis for the direction-finding procedure (Rlgar2) as well as the global
convergence proof of subBFGS in Appendix D require the spectruBh tf be bounded from above
and below by a positive scalar:

I(H:0<h<H<w):(vt)h=B <H. (28)

From a theoretical point of view it is difficult to guarantee (28) (Nocetad Wright, 1999, page
212), but based on the fact th& is an approximation to the inverse Hessip %, it is reasonable
to expect (28) to be true if

(Vt) 1/H < Hy < 1/h.

Since BFGS “senses” the Hessian via (6) only through the parameteradidmg displacements
andy;, we can translate the bounds on the spectruifpinto conditions that only involve; and

Yt

T T
tytzl andytytgé, with 0 < h<H < 0. (29)
H StTyt h

S

vt
(Vt) o

This technique is used in Nocedal and Wright (1999, Theorem 8.5).slfstrongly conveX and

st # 0, then there exists afl such that the leftinequality in (29) holds. On general convex functions,
one can skip BFGS’ curvature update(H v;/s, st) falls below a threshold. To establish the
second inequality, we add a fraction#fto s; at Line 14 of Algorithm 1 (though this modification

is never actually invoked in our experiments of Section 8, where we set0-8).

3.5 Limited-Memory Subgradient BFGS

It is straightforward to implement an LBFGS variant of our subBFGS algoritive simply modify
Algorithms 1 and 2 to compute all products betwaBnand a vector by means of the standard
LBFGS matrix-free scheme (Nocedal and Wright, 1999, Algorithm 9.1). célethe resulting
algorithm subLBFGS.

3.6 Convergence of Subgradient (L)BFGS

In Section 3.4 we have shown that the spectrum of SubBFGS’ inversgdtesstimate is bounded.
From this and other technical assumptions, we prove in Appendix D thBFES is globally con-
vergent in objective function value, that Hw) — inf,, J(w). Moreover, in Appendix E we show
that subBFGS converges for all counterexamples we could find in thelliterased to illustrate the
non-convergence of existing optimization methods on nonsmooth problems.

We have also examined the convergence of subLBFGS empirically. In ihogt experiments
of Section 8, we observe that after an initial transient, SUbLBFGS obésearperiod of linear con-
vergence, until close to the optimum it exhibits superlinear convergemawioe. This is illustrated
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Figure 9: Convergence of subLBFGS in objective function value on Eampregularized risk
minimization problems with binary (left) and multiclass (right) hinge losses.

in Figure 9, where we plot (on a log scale) the excess objective funcaiole 3(w ) over its “opti-
mum” J*’ against the iteration number in two typical runs. The same kind of convezderhavior
was observed by Lewis and Overton (2008a, Figure 5.7), who appkerldbsical BFGS algorithm
with a specially designed line search to nonsmooth functions. They cautichérepparent super-
linear convergence may be an artifact caused by the inaccuracy oftieated optimal value of
the objective.

4. SubBFGS forL,-Regularized Binary Hinge Loss

Many machine learning algorithms can be viewed as minimizind.theegularized risk
Jw) = Sl + L 1@ 7.w) (30
w) = Sllw ni; i, Z,w),

whereA > 0 is a regularization constant; € X C RY are the input featureg, € Z C Z the cor-
responding labels, and the lds& a non-negative convex function af which measures the dis-
crepancy between and the predictions arising from using A loss function commonly used for
binary classification is the binary hinge loss

l(x,zw) = max0,1—zw'x), (31)
wherez € {£1}. Ly-regularized risk minimization with the binary hinge loss is a convex but nons-

mooth optimization problem; in this section we show how subBFGS (Algorithm 1peaapplied
to this problem.

7. Estimated empirically by running subLBFGS for*i&econds, or until the relative improvement over 5 iterations was
less than 108,
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Let £, M, and index the set of points which are in error, on the margin, and well-classified
respectively:

E:={ic{Ll2,....,n}:1—zw x; >0},
M:={ic{1,2,...,n}:1—zw' x =0},
W:={iec{1,2,....,n}:1-zw x; <0}.

Differentiating (30) after plugging in (31) then yields

> Bizxi, (32)

1 if ieE
where w _)\w—— Zz,a:. and Bi:=<¢ [0,1] if ieM,
= 0 if ieW.

4.1 Efficient Oracle for the Direction-Finding Method

Recall that subBFGS requires an oracle that provides aggwgt)ng for a given directionp.
For Lo-regularized risk minimization with the binary hinge loss we can implement suchaateo
at a computational cost @(d| M |), whered is the dimensionality op and| 2/ | the number of
current margin points, which is normally much less timaffowards this end, we use (32) to obtain

.
_ 1
sup g'p = sup (wt_n > Bmaa) p

gead(wr) Biie Mt ieM;
1
= wt p—f z inf (BiziaciTp). (33)
|e%{B'[QH

Since for a givem the first term of the right-hand side of (33) is a constant, the supremumiiseatta
when we seB; Vi € M via the following strategy:

B = 0 if zz'p >0,
"1 if zaep < O

4.2 Implementing the Line Search

The one-dimensional convex functidn(n) := J(w + np) (Figure 10, left) obtained by restricting
(30) to a line can be evaluated efficiently. To see this, rewrite (30) as

1
J(w) = = ||w|?®+ - 1'max0, 1 -z Xw), (34)
where0 and1 are column vectors of zeros and ones, respectivdbnotes the Hadamard (component-

wise) product, anct € R" collects correct labels corresponding to each row of datXin=
[T1, T2, - ,xn) € R™. Given a search directiop at a pointw, (34) allows us to write

o) = Alwlt+Anwp+ 20 jplE+ L1 mao, (1 (£ +nag)). @)

1161



YU, VISHWANATHAN, GUNTER AND SCHRAUDOLPH

)
=
9
= 8
i) o
<
=
wn

Figure 10: Left: Piecewise quadratic convex functibrof step sizen; solid disks in the zoomed
inset are subdifferentiable points. Right: The subgradied®(of) increases monotoni-
cally with n, and jumps discontinuously at subdifferentiable points.

wheref ;= z- Xw andAf := z- X p. Differentiating (35) with respect 19 gives the subdifferential
of &:

1
0d(n) =Aw'p+nA|lp|*—=a(n)"Af, (36)

whered : R — R" outputs a column vectdd; (n),82(n),---,,(n)] " with

[0,1] if fi+nAfi=1, (37)
0 if fi+nAfi>1

1 if fi+nafi <1,
di(n) =

We cachef andAf, expendingO(nd) computational effort and usin@(n) storage. We also
cache the scala@“w”z, Aw'p, and%HpHZ, each of which require®(d) work. The evaluation of
1—(f+nAf),d(n), and the inner products in the final terms of (35) and (36) all @{® effort.
Given the cached terms, all other terms in (35) can be computed in constantirmeeducing the
cost of evaluatingP(n) (resp., its subgradient) ©(n). Furthermore, from (37) we see thafn) is
differentiable everywhere except at

ni = (1— fi)/Af with Af #0, (38)

where it becomes subdifferentiable. At these points an element of thetmdvegtor (37) changes
from O to 1 or vice versa (causing the subgradient to jump, as shown ineFi@y right); otherwise
d(n) remains constant. Using this property&f)), we can update the last term of (36) in constant
time when passing a hinge point (Line 25 of Algorithm 3). We are now in a poditiantroduce an
exact line search which takes advantage of this scheme.
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1 (n) W o(n)

—————————— >
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Figure 11: Nonsmooth convex functi@m of step sizen. Solid disks are subdifferentiable points;
the optimal stem* either falls on such a point (left), or lies between two such points

(right).

4.2.1 EXACT LINE SEARCH

Given a directiorp, exact line search finds the optimal step sjze= argmin, .., ®(n) that satisfies
0 € 0®d(n*), or equivalently

infa®(n*) <0< supdd(n*).

By Theorem 1, sup®(n) is monotonically increasing with). Based on this property, our algorithm
first builds a list of all possible subdifferentiable points ané 0, sorted by non-descending value
of n (Lines 4-5 of Algorithm 3). Then, it starts with = 0, and walks through the sorted list
until it locates the “target segment”, an interygh, np] between two subdifferential points with
supd ®(na) < 0 and sup P(np) > 0. We now know that the optimal step size either coincides with
No (Figure 11, left), or lies ifna,Np) (Figure 11, right). Ifn* lies in the smooth intervalna, np),
then setting (36) to zero gives

. o) "Af/n—Aw’

Otherwisen™ = np. See Algorithm 3 for the detailed implementation.

5. Segmenting the Pointwise Maximum of 1-D Linear Functions

The line search of Algorithm 3 requires a vectplisting the subdifferentiable points along the line
w + Np, and sorts it in non-descending order (Line 5). For an objectivetiumdike (30) whose
nonsmooth component is just a sum of hinge losses (31), this vector iga&syyto compute (cf.
(38)). In order to apply our line search approach to multiclass and multilessts, however, we
must solve a more general problem: we need to efficiently find the sulatiffable points of a

1163



YU, VISHWANATHAN, GUNTER AND SCHRAUDOLPH

Algorithm 3 Exact Line Search foc,-Regularized Binary Hinge Loss
. input w,p,A, f, andAf as in (35)
: output optimal step size
th=Alp|? ji=1
cn:=[1-f)./Af,0 (vector of subdifferentiable points & zero)
7 = argsort(n) (indices sorted by non-descending valueppf
while N <0 do
j=j+1
: end while
s nN= nT[j /2
:fori:=1to f.sizedo
) . 1 if fi+nAfi<1
1 o= { 0 otherwise
12: end for
13: p:=8"Af/n—Aw'p
14:n:=0p =0

[EEY

Ay
o

(value ofd(n) (37) for anyn € (0,nx))

15: g:=—p (value of sup ®(0))
16: while g < 0do
17 p=p
18: if j > mw.sizethen
19: n:=oo (no more subdifferentiable points)
20: break
21: else
22: n:=nn
23:  endif
24:  repeat
- 0 __{ p—Afy/n if &y =1 (move to next subdifferentiable
' © | p+Afg/n otherwise point and updageaccordingly)
26: ji=j+1
27: until N # N, andj < w.size
28: g:=nh-p (value of su@®(ny ,))
29: end while
30: return min(n, p’/h) (cf. equation 39)

one-dimensional piecewise linear functipn R — R defined to be the pointwise maximum iof
lines:

p(n) = max(bp+nap), (40)

1<p<r

wherea, andby, denote the slope and offset of th® line, respectively. Clearly is convex since

it is the pointwise maximum of linear functions (Boyd and Vandenberghe},Z8éction 3.2.3), see
Figure 12(a). The difficulty here is that althougltonsists of at most line segments bounded by
at mostr — 1 subdifferentiable points, there arg — 1) /2 candidates for these points, namely all
intersections between any two of théines. A naive algorithm to find the subdifferentiable points
of p would therefore také)(rz) time. In what follows, however, we show how this can be done in
justO(rlogr) time. In Section 6 we will then use this technique (Algorithm 4) to perform efficie
exact line search in the multiclass and multilabel settings.
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(a) Pointwise maximum of lines (b) Case 1 (c) Case 2

Figure 12: (a) Convex piecewise linear function defined as the maximurtir@§ but comprising
only 4 active line segments (bold) separated by 3 subdifferentiable pbilatk(dots).
(b, ¢) Two cases encountered by our algorithm: (b) The new intersgdtiack cross)
lies to the right of the previous one (red dot) and is therefore pushedlomiiack; (c)
The new intersection lies to the left of the previous one. In this case the laptepjed
from the stack, and a third intersection (blue square) is computed anddpoistueit.

Algorithm 4 Segmenting a Pointwise Maximum of 1-D Linear Functions
1. input vectorsa andb of slopes and offsets
lower boundL, upper boundJ, with0<L <U < o
2: output sorted stack of subdifferentiable poinjs
and corresponding active line indicgs

3:y:=b+La

4: = argsort(—Y) (indices sorted by non-ascending value/pf
5. Spush (L, ) (initialize stack)
6: for g:=2 to y.size do

7 while notSempty do

8: (n,§) :==Stop

/. b"q B bE . . .
9 n = (intersection of two lines)
8 — an

10: if L<n’<nor(n=Landag, > a) then
11: Spop (cf. Figure 12(c))
12: else
13: break
14: end if

15:  end while

16: if L<n'<Uor(n'=Landag >a) then

17: Spush (n', 1) (cf. Figure 12(b))
18: end if

19: end for

20: return S

We begin by specifying an intervll,U] (0 <L <U < ) in which to find the subdifferentiable
points ofp, and set/ := b+ La, wherea = [a3,az,--- ,&] andb = [by, by, --- ,b]. In other words,
y contains the intersections of thdines definingp(n) with the vertical linen = L. Let w denote
the permutation that sorysin non-ascending order, that 8< q = Yn, > Yr,, and letp®@ be the
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function obtained by considering only the tQp< r lines atn = L, that is, the firsg lines inr:

p(Q) n) = 1?%);(bnp +na,). (41)
It is clear thatp") = p. Let n contain allg’ < q— 1 subdifferentiable points gf® in [L,U] in
ascending order, arglthe indices of the correspondirgtivelines, that is, the maximum in (41)
is attained for linekj_1 over the intervaln;j-1,n;]: &j-1 := Ty, wherep* = argmax ;4 (br, +
Nan,) forn € [nj_1,nj], and linest;_; andg; intersect at;.

Initially we setng := L and&p := 111, the leftmost bold segment in Figure 12(a). Algorithm 4

goes through lines ilr sequentially, and maintains a Last-In-First-Out st&8ekhich at the end of
theq!" iteration consists of the tuples

(N0.€0);(N1,&1),---,(Ng&q)

in order of ascending;, with (ng,&y) at the top. After iterationsS contains a sorted list of all
subdifferentiable points (and the corresponding active lineg}ep" in [L,U], as required by our
line searches.

In iterationg+ 1 Algorithm 4 examines the intersectighbetween linegy andmy.1: If n > U,
line 141 is irrelevant, and we proceed to the next iteratiomdf< n’ <U as in Figure 12(b), then
line 1441 is becoming active af’, and we simply puslin’, . 1) onto the stack. Ify’ <ngy asin
Figure 12(c), on the other hand, then limg.1 dominates lin€y over the interva(n’,«) and hence
over(ng,U] C (n',), so we popng,&y) from the stack (deactivating lirgy), decrementy, and
repeat the comparison.

Theorem 2 The total running time of Algorithm 4 is(©logr).

Proof Computing intersections of lines as well as pushing and popping from tHerstgugireO(1)

time. Each of the lines can be pushed onto and popped from the stack at most once; anhortize
overr iterations the running time is therefo@r). The time complexity of Algorithm 4 is thus
dominated by the initial sorting of (i.e., the computation of), which takeO(r logr) time. 1

6. SubBFGS for Multiclass and Multilabel Hinge Losses

We now use the algorithm developed in Section 5 to generalize the subBFG&doéection 4 to
the multiclass and multilabel settings with finite label £SetWe assume that given a feature vector
x our classifier predicts the label

Z' = argmaxf (w, x, 2),
iy

wheref is a linear function ofw, that is, f (w, =, 2) = w'@(x, 2) for some feature magp(x, z).

6.1 Multiclass Hinge Loss

A variety of multiclass hinge losses have been proposed in the literaturecthatagize the binary
hinge loss, and enforce a margin of separation between the truezlatmel every other label. We
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focus on the following rather general variant (Taskar et al., 2804):
[(xi,z,w) = rr;azx[A(z,z;)Jrf(w,mi,z)—f(w,aci,zi)], (42)
4

whereA(z,z) > 0 is thelabel lossspecifying the margin required between labelandz. For
instance, a uniform margin of separation is achieved by sefting') := 1 > 0 Vz# Z (Crammer
and Singer, 2003a). By requiring thet € Z : A(z,z) = 0 we ensure that (42) always remains
non-negative. Adapting (30) to the multiclass hinge loss (42) we obtain

J(w) = ;Hw’Z—l—:;.iryeaZX[A(z,zi)—F f(w,xi,z) — f(w,xi,z)]. (43)

For a givenw, consider the set

Zi = argmaXA(z z) + f(w, i, 2) — f(w,xi,2)]

ez

of maximum-loss labels (possibly more than one) forithéraining instance. Sincé(w,z,z) =
w' @z, 2), the subdifferential of (43) can then be written as

1 n
AJ(w) = AMw+ = z Biz¢(xi,2) (44)
ni< €2
. o 0,1 ifzeZ' B o
with Bi, = { 0 otherwise O,z Sit. ZeZZ|3.7Z—O, (45)

whered is the Kronecker deltad,, = 1 if a=b, and 0 otherwisé.

6.2 Efficient Multiclass Direction-Finding Oracle

For Lo-regularized risk minimization with multiclass hinge loss, we can use a similar scheme a
described in Section 4.1 to implement an efficient oracle that provides B DS, g'p for the
direction-finding procedure (Algorithm 2). Using (44), we can write

sup g'p = Aw'p + = Zzsup(s.chmm p). (46)

gedd(w) ez Biz

The supremum in (46) is attained when we pick, from the choices offgréds),

Biz:= 0,7 — 8,7, Where Z = argmaxp(mi,z)Tp

ez

8. Our algorithm can also deal with the slack-rescaled variant of Tetatidis et al. (2005).
9. Letl := max.; [A(z z) + f(w,xi,2) — f(w,zi,z)]. Definition (45) allows the following values @; z:

| z=7z zez\{z} otherwise
F<0| 0 0 0 o
F—0|[-10 (0.1 0 st 3 Ba=0
F>o0| -1 [0,1] 0
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6.3 Implementing the Multiclass Line Search

Let ®(n) := J(w + np) be the one-dimensional convex function obtained by restricting (43) to a
line along directiorp. Lettingpi(n) := (i, z,w +np), we can write

om) = )2+ anw'p + L pl2 + L S picn) 47)
n) = 5llw nwp +—-lp ni;pln-

Eachpij(n) is a piecewise linear convex function. To see this, observe that

f(w+np.2,2) = (w+np) @z.2) = f(w,2,2) +nf(p,z,2)

and hence

pi(n) := max[A(z z) + f(w,zi,2) — f(w,i,2) +n(f(p,zi,2) — T(p,zi,2))],  (48)

-~

::b(z” ::ag)

which has the functional form of (40) with= | Z|. Algorithm 4 can therefore be used to compute
a sorted vecton(!) of all subdifferentiable points qfi(n) and corresponding active ling&) in the
interval [0, ) in O(| Z|log|Z|) time. With some abuse of notation, we now have

(i) ()

Nem Nl = pin) = by +nag. (49)

The first three terms of (47) are constant, linear, and quadratic (wittnagative coefficient)
in n, respectively. The remaining sum of piecewise linear convex funcpgng is also piecewise
linear and convex, and sb(n) is a piecewise quadratic convex function.

6.3.1 EXACT MULTICLASS LINE SEARCH

Our exact line search employs a similar two-stage strategy as discussettion3e2.1 for locat-
ing its minimumn* := argmin,.,®(n): we first find the firstsubdifferentiablepoint N past the
minimum, then locat&* within the differentiable region to its left. We precompute and cache a
vectoral) of all the slopes!’ (offsetshy’ are not needed), the subdifferentiable poipits (sorted
in ascending order via Algorithm 4), and the corresponding ind§€ésf active lines ofp; for all
training instanceg as well ag|w||? w'p, andA||p||>

Since®(n) is convex, any point) < n* cannot have a non-negative subgradi@ntThe first
subdifferentiable poinff > n* therefore obeys

A= minne{n™i=12..n:n>n*
= minne{n",i=1,2,...,n}:supd®d(n) > 0. (50)

We solve (50) via a simple linear search: Starting fnpm 0, we walk from one subdifferentiable
point to the next until supd(n) > 0. To perform this walk efficiently, define a vectgre N" of
indices into the sorted vectert) resp.£(; initially ¢ := 0, indicating that(Vi) r]é') = 0. Given the
current index vectotp, the next subdifferentiable point is then

r_n) (i)

N =Ny, 41 where i’ = argminr]<wi+1);

1<i<n

(51)

10. If @(n) has a flat optimal region, we defing to be the infimum of that region.
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Algorithm 5 Exact Line Search foc,-Regularized Multiclass Hinge Loss
1: input base pointw, descent directiop, regularization parametar, vectora of
all slopes as defined in (48), for each training instanserted staclg of
subdifferentiable points and active lines, as produced by Algorithm 4
output optimal step size
a:=a/n, h:=\|p|?
p:=Aw'p
fori:=1tondo
while not§.empty do
Ri.push §.pop (reverse the stacks)
end while
(-,&) = R.pop
P:=p+a;
: end for
:nN:=0p=0
:gi=p (value of sup ®(0))
: whileg< 0do
pi=p
if Vi: Ri.empty then
n.=o (no more subdifferentiable points)
break
end if
I:=argmin ., n': (n,-) =Ri.top (find the next subdifferentiable point)
P=P—Jicrag
Y

NNRER R R RRRRRR R
PO O NN RO

NN

={& : (n.&) = R.pop, i€ 1)

=PHYre=gg

2 g—pinh (value of supd(n))
25: end while

26: return min(n, —p’/h)

the step is completed by incrementidgyy, that is, ) := Qi + 1 so as to removqf,ﬂi/,) from future
consideratiort! Note that computing the argmin in (51) tak®gogn) time (e.g., using a priority
gueue). Inserting (49) into (47) and differentiating, we find that

1 n
AN T, / 2, = )
supd®(n’) = Aw'p+An'||p||°+ ni;ai(w'?' (52)

The key observation here is that after the initial calculation ofésb®) = Aw'p + % z{‘zlazén

for n = 0, the sum in (52) can be updated incrementally in constant time through thimacdd

in — a Ines 20-23 of Algorithm 5).
a1 i (L 20-23 of Algorithm 5)
uJi/ (qu/*l)

Suppose we find) = nﬁﬂl,) for somei’. We then know that the minimum* is either equal ta
(Figure 11, left), or found within the quadratic segment immediately to its lefufEid 1, right).

11. For ease of exposition, we assuimia (51) is unique, and deal with multiple choicesiih Algorithm 5.
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We thus decremenypy (i.e., take one step back) so as to index the segment in question, set the
right-hand side of (52) to zero, and solve fgrto obtain

Mo'p+isiag
n* = min(ﬁ, n2=1% . (53)

—Allp|?

This only takes constant time: we have cachég andA||p||?, and the sum in (53) can be obtained
incrementally by addingz“/) — az(i/) to its last value in (52).
Wy (Wyr+1)

To locater) we have to walk at mogD(n|Z|) steps, each requirin@(logn) computation of
argmin as in (51). Given, the exact minimunm* can be obtained i®(1). Including the prepro-
cessing cost ad(n| Z|log|Z|) (for invoking Algorithm 4), our exact multiclass line search therefore
takesO(n| Z|(logn|Z|)) time in the worst case. Algorithm 5 provides an implementation which in-
stead of an index vectap directly uses the sorted stacks of subdifferentiable points and active lines
produced by Algorithm 4. (The cost of reversing those stacks in LirBo6Algorithm 5 can easily
be avoided through the use of double-ended queues.)

6.4 Multilabel Hinge Loss

Recently, there has been interest in extending the concept of the hisge losiltilabel problems.
Multilabel problems generalize the multiclass setting in that each training insineassociated
with a set of labelsz; C Z (Crammer and Singer, 2003b). For a uniform margin of separatian
hinge loss can be defined in this setting as follows:

|(zi, Zi,w) := max0, T+ maxf(w,zi,Z)—minf(w,z;,2)]. (54)
Z’¢Zi 2E Zj

We can generalize this to a not necessarily uniform labelAggsz) > 0 as follows:

@i, 21w) = max [Z,2)+ f(w,a,2) ~ f(w,:.2), (55)
¢ z\{z

where as before we require thisiz, z) = 0 Vz € Z so that by explicitly allowingZ = zwe can ensure
that (55) remains non-negative. For a uniform madyid, z) = t VZ # z our multilabel hinge loss
(55) reduces to the decoupled version (54), which in turn reduces tauhielass hinge loss (42)
if Zj:={z} foralli.

For a givenw, let

zi = argmaxA(Z,2) + f(w,zi,Z) — f(w, zi,2)]
(zZ):ze zi
Z¢ zi\{z}

be the set of worst label pairs (possibly more than one) foitftteaining instance. The subdiffer-
ential of the multilabel analogue db-regularized multiclass objective (43) can then be written just
as in (44), with coefficients

Bizi= ) VS)Z - yg';, where (Vi) yg')z =1 and Vg)z >0. (56)
Z:(Z.2ez Z:(z7)ez; (zZ)ez:
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Now let (z,7) := argmad, »)e z: (@i, Z) — ¢(zi,2)] "p be a single steepest worst label pair in
directionp. We obtain arg s%aj(w)ng for our direction-finding procedure by picking, from the
choices offered by (56),, := 8,287-

Finally, the line search we described in Section 6.3 for the multiclass hinge dosbec ex-
tended in a straightforward manner to our multilabel setting. The only cavéatisowpi(n) :=
[ (xi, Zi, w +np) must be written as

pi(n) = ;T;aXZ[A(i,Z)Jrf(’w,wii)—f(wvai,Z)Jrrl(f(p,wi,i)—f(p,fci,Z))]- (57)
27):2€ 2 ~ ~
7¢ z\{z} g _. 0

)
27 ¥4

In the worst case, (57) could be the piecewise maximu@(af|?) lines, thus increasing the overall
complexity of the line search. In practice, however, the set of true léiyedusually small, typically
of size 2 or 3 (cf. Crammer and Singer, 2003b, Figure 3). As lorg gsZi| = O(1), our complexity
estimates of Section 6.3.1 still apply.

7. Related Work

We discuss related work in two areas: nonsmooth convex optimization, arptdhiem of seg-
menting the pointwise maximum of a set of one-dimensional linear functions.

7.1 Nonsmooth Convex Optimization

There are four main approaches to nonsmooth convex optimization: qeagehlmethods, bundle
methods, stochastic dual methods, and smooth approximation. We disclisd daese briefly, and
compare and contrast our work with the state of the art.

7.1.1 NONSMOOTHQUASI-NEWTON METHODS

These methods try to find a descent quasi-Newton direction at every iteratid invoke a line
search to minimize the one-dimensional convex function along that directiomodfé that the line
search routines we describe in Sections 4—6 are applicable to all suchdsieffroexample of this
class of algorithms is the work of L8kn and Mtek (1999), who propose an extension of BFGS
to nonsmooth convex problems. Their algorithm samples subgradientsdanmourdifferentiable
points in order to obtain a descent direction. In many machine learning prsldgaluating the
objective function and its (sub)gradient is very expensive, making an@pproach inefficient. In
contrast, given a current iterate;, our direction-finding routine (Algorithm 2) samples subgra-
dients from the sedJ(w) via the oracle. Since this avoids the cost of explicitly evaluating new
(sub)gradients, it is computationally more efficient.

Recently, Andrew and Gao (2007) introduced a variant of LBFGS, tiiea®t-Wise Limited-
memory Quasi-Newton (OWL-QN) algorithm, suitable for optimizibgregularized log-linear
models:

J(w) = )\||w||1+iiln(1+e2w%i)7 (58)

logistic loss
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where the logistic loss is smooth, but the regularizer is only subdifferentitpeints wherew
has zero elements. From the optimization viewpoint this objective is very similartegularized
hinge loss; the direction finding and line search methods that we discusSedtions 3.2 and 3.3,
respectively, can be applied to this problem with slight modifications.

OWL-QN is based on the observation that theregularizer is linear within any given orthant.
Therefore, it maintains an approximati@f" to the inverse Hessian of the logistic loss, and uses
an efficient scheme to select orthants for optimization. In fact, its suceceatiyjgdepends on its
direction-finding subroutine, which demands a specially chosen suibgtgd"” (Andrew and Gao,
2007, Equation 4) to produce the quasi-Newton directi¥,= 1(p, g°"), wherep := —B"g°"
and the projectiort returns a search direction by setting fffeelement ofp to zero whenever
pig”™ > 0. As shown in Section 8.4, the direction-finding subroutine of OWL-QNhmreplaced
by our Algorithm 2, which makes OWL-QN more robust to the choice of sathgnts.

7.1.2 BUNDLE METHODS

Bundle method solvers (Hiriart-Urruty and Lergahal, 1993) use past (sub)gradients to build a
model of the objective function. The (sub)gradients are used to loagmeébthe objective by a
piecewise linear function which is minimized to obtain the next iterate. This funaiadhe dif-
fers from the BFGS approach of using past gradients to approximateteesge) Hessian, hence
building a quadratic model of the objective function.

Bundle methods have recently been adapted to the machine learning corfiext, thhey are
known as SVMStruct (Tsochantaridis et al., 208&5p.BMRM (Smola et al., 2007). One notable
feature of these variants is that they do not employ a line search. This isgjddiifinoting that
a line search involves computing the value of the objective function multiple timesteatglly
expensive operation in machine learning applications.

Franc and Sonnenburg (2008) speed up the convergence of SWiifdirL,-regularized binary
hinge loss. The main idea of their optimized cutting plane algorithm, OCAS, is torped line
search along the line connecting two successive iterates of a bundle methed Recently they
have extended OCAS to multiclass classification (Franc and Sonnenlb®g), 2Although devel-
oped independently, their line search methods for both settings are veryrgortite methods we
describe in Sections 4.2.1 and 6.3.1, respectively. In particular, theirdarels for multiclass clas-
sification also involves segmenting the pointwise maximumIsD linear functions (cf. Section 5),
though theO(r?) time complexity of their method is worse than @(r logr).

7.1.3 SOCHASTICDUAL METHODS

Distinct from the above two classes of primal algorithms are methods whick iwahe dual do-
main. A prominent member of this class is the LaRank algorithm of Bordes €2Q0)7§, which
achieves state-of-the-art results on multiclass classification problems. Wiglelgorithms are
very competitive on clean data sets, they tend to be slow when given na&y da

7.1.4 3100TH APPROXIMATION

Another possible way to bypass the complications caused by the nonsmethfren objective
function is to work on a smooth approximation instead—see for instance tastreork of Nes-
terov (2005) and Nemirovski (2005). Some machine learning applicatewves &iso been pursued
along these lines (Lee and Mangasarian, 2001; Zhang and Oles, 20@bugh this approach can
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be effective, it is unclear how to build a smooth approximation in generatth&umore, smooth
approximations often sacrifice dual sparsity, which often leads to betterg&ation performance
on the test data, and also may be needed to prove generalization bounds.

7.2 Segmenting the Pointwise Maximum of 1-D Linear Functions

The problem of computing the line segments that comprise the pointwise maximugivehaset of
line segments has received attention in the area of computational geometAgamval and Sharir
(2000) for a survey. Hershberger (1989) for instance propagdidide-and-conquer algorithm for
this problem with the same time complexity as our Algorithm 4. The Hershber§80)lalgo-
rithm solves a slightly harder problem—rhis function is the pointwise maximum of égenents,
as opposed to our lines—but our algorithm is conceptually simpler and ¢agieplement.

A similar problem has also been studied under the banner of kinetic dattustsiby Basch
(1999), who proposed a heap-based algorithm for this problem anega worst-case(r log?r)
bound, where is the number of line segments. Basch (1999) also claims that the lower bound is
O(rlogr); our Algorithm 4 achieves this bound.

8. Experiments

We evaluated the performance of our subLBFGS algorithm with, and cemhfiizto other state-of-
the-art nonsmooth optimization methodslonregularized binary, multiclass, and multilabel hinge
loss minimization problems. We also compared OWL-QN with a variant that usediregtion-
finding routine onLi-regularized logistic loss minimization tasks. On strictly convex problems
such as these every convergent optimizer will reach the same solutionadomgeneralisation
performance is therefore pointless. Hence we concentrate on empiricaiyggng the convergence
behavior (objective function values. CPU seconds). All experiments were carried out on a Linux
machine with dual 2.4 GHz Intel Core 2 processors and 4 GB of RAM.

In all experiments the regularization parameter was chosen from thelsét £0—} so as to
achieve the highest prediction accuracy on the test data set, while geneerbehavior (objective
function valuevs. CPU seconds) is reported on the training data set. To see the influenae of th
regularization parametey, we also compared the time required by each algorithm to reduce the
objective function value to within 2% of the optimal valtie For all algorithms the initial iterate
wo was set td. Open source C++ code implementing our algorithms and experiments is available
for download fromhttp://www.cs.adelaide.edu.au/ ~ jinyu/Code/nonsmoothOpt.tar.gz

The subgradient for the construction of the subLBFGS search dire@fotine 12 of Algo-
rithm 1) was chosen arbitrarily from the subdifferential. For the binargdiloss minimization
(Section 8.3), for instance, we picked an arbitrary subgradient ljoraly setting the coefficient
Bi Vie M in (32) to either 0 or 1.

8.1 Convergence Tolerance of the Direction-Finding Procedure

The convergence toleraneef Algorithm 2 controls the precision of the solution to the direction-
finding problem (11): lower tolerance may yield a better search directigguré-13 (left) shows

12. ForL;-regularized logistic loss minimization, the “optimal” value was the final objedtinction value achieved by
the OWL-QN* algorithm (cf. Section 8.4). In all other experiments, it was found byning subLBFGS for 19
seconds, or until its relative improvement over 5 iterations was less thah 1
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Figure 13: Performance of subLBFGS with varying direction-finding toleec in terms of ob-
jective function valuevs. number of iterations (top rowmesp. CPU seconds (bottom
row) on samplé.,-regularized risk minimization problems with binary (left), multiclass
(center), and multilabel (right) hinge losses.

that on binary classification problems, subLBFGS is not sensitive to theechte (i.e., the quality
of the search direction). This is due to the fact thitw) as defined in (32) is usually dominated by
its constant component; search directions that correspond to different choicesthérefore can
not differ too much from each other. In the case of multiclass and multilabssdititzation, where
the structure 00J(w) is more complicated, we can see from Figure 13 (top center and right) that
a better search direction can lead to faster convergence in terms of itematigvers. However,
this is achieved at the cost of more CPU time spent in the direction-finding rovAmehown in
Figure 13 (bottom center and right), extensively optimizing the searchidinectually slows down
convergence in terms of CPU seconds. We therefore used an intermedisgefe = 10~ for all
our experiments, except that for multiclass and multilabel classification pnsblee relaxed the
tolerance to D at the initial iteratav = 0, where the direction-finding oracle arg gupy o) g'pis
expensive to compute, due to the large number of extreme poiad ).

8.2 Size of SUbLBFGS Buffer
The sizemof the subLBFGS buffer determines the number of parameter and graisetdcement

vectorss; andy; used in the construction of the quasi-Newton direction. Figure 14 showththa
performance of sSuUbLBFGS is not sensitive to the particular valmewithin the range %< m < 25.
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Figure 14: Performance of subLBFGS with varying buffer size on sainptegularized risk min-
imization problems with binary (left), multiclass (center), and multilabel hinge osse

(right).
| Data Set | Train/Test Set Siz¢ Dimensionality| Sparsity|
Covertype 522911/58101 54 | 77.8%
CCAT 781265/23149 47236 | 99.8%
Astro-physics 29882/32487 99757 | 99.9%
MNIST-binary 60000/10000 780 | 80.8%
Adult9 32561/16281 123 | 88.7%
Real-sim 57763/14438 20958 | 99.8%
Leukemia 38/34 7129 | 00.0%

Table 1: The binary data sets used in our experiments of Sections 2, 8.8.4an

We therefore simply seth= 15 a priori for all subsequent experiments; this is a typical value for
LBFGS (Nocedal and Wright, 1999).

8.3 Ly-Regularized Binary Hinge Loss

For our first set of experiments, we applied subLBFGS with exact lineekdgalgorithm 3) to the
task ofL,-regularized binary hinge loss minimization. Our control methods are the boretteod
solver BMRM (Teo et al., 2010) and the optimized cutting plane algorithm OGA&E and Son-
nenburg, 2008)2 both of which were shown to perform competitively on this task. SVMStruct
(Tsochantaridis et al., 2005) is another well-known bundle method solaeigiwidely used in
the machine learning community. Fos-regularized optimization problems BMRM is identical to
SVMStruct, hence we omit comparisons with SVMStruct.

Table 1 lists the six data sets we used: The Covertype data set of Bladkakd& Dean'*
CCAT from the Reuters RCV1 collectidfi, the Astro-physics data set of abstracts of scientific
papers from the Physics ArXiv (Joachims, 2006), the MNIST datafdearmdwritten digit$® with

13. The source code of OCAS (version 0.6.0) was obtained fitgmAwww.shogun-toolbox.org

14. Data set can be foundfatp:/kdd.ics.uci.edu/databases/covertype/covertyp e.html .
15. Data set can be found fatp://www.daviddlewis.com/resources/testcollection sirevl .
16. Data set can be foundtatp://yann.lecun.com/exdb/mnist
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Li-reg. logistic loss|| Lo-reg. binary loss
Data Set )\|_1 ‘ |(|_1 ‘ kLlr )\|_2 ‘ k|_2
Covertype 10°° 1 2| 10° 0
CCAT 10| 284| 406| 10° 0
Astro-physics || 10™° | 1702 | 1902 | 104 0
MNIST-binary || 104 55 77 1076 0
Adult9 104 2 6| 10° 1
Real-sim 1078 | 1017 | 1274| 10° 1

Table 2: Regularization parametkrand overall numbek of direction-finding iterations in our
experiments of Sections 8.3 and 8.4, respectively.
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Figure 15: Objective function values.CPU seconds oh,-regularized binary hinge loss minimiza-
tion tasks.

two classes: even and odd digits, the Adult9 data set of census incomé daththe Real-sim data
set of realvs.simulated data’ Table 2 lists our parameter settings, and reports the overall number
k., of iterations through the direction-finding loop (Lines 6—13 of Algorithm@&)éach data set.
The very small values &, indicate that on these problems subLBFGS only rarely needs to correct
its initial guess of a descent direction.

It can be seen from Figure 15 that subLBFGS (solid) reduces the w@élilne objective con-
siderably faster than BMRM (dashed). On the binary MNIST data sein&ance, the objective

17. Data set can be found fatp://www.csie.ntu.edu.tw/ ~ ¢jlin/libsvmtools/datasets/binary.html
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Figure 16: Regularization parameterc {1076,-.. 1071} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value @p-regularized binary hinge loss
minimization tasks.

function value of subLBFGS after 10 CPU seconds is 25% lower than tiBYIBM. In this set of
experiments the performance of subLBFGS and OCAS (dotted) is very similar

Figure 16 shows that all algorithms generally converge faster for lamaes of the regular-
ization constank. However, in most cases subLBFGS converges faster than BMRMsaraide
range ofA values, exhibiting a speedup of up to more than two orders of magnitude.BEES
and OCAS show similar performance here: for small valueks, @CAS converges slightly faster
than subLBFGS on the Astro-physics and Real-sim data sets but is autped by subLBFGS on
the Covertype, CCAT, and binary MNIST data sets.

8.4 Li-Regularized Logistic Loss

To demonstrate the utility of our direction-finding routine (Algorithm 2) in its owght, we plugged
itinto the OWL-QN algorithm (Andrew and Gao, 208%xs an alternative direction-finding method
such thap® = descentDirection(g®%, €, kmax), and compared this variant (denoted OWL-QN¥*)
with the original (cf. Section 7.1) oh;-regularized minimization of the logistic loss (58), on the
same data sets as in Section 8.3.

An oracle that supplies argsi;(., g ' p for this objective is easily constructed by noting
that (58) is nonsmooth whenever at least one component of the parareeterw is zero. Let
w; = 0 be such a component; the corresponding component of the subulifde\ | w||1 of theL,

18. The source code of OWL-QN (original release) was obtained Wicnosoft Research throudtitp://tinyurl.
com/p774cx .
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Figure 17: Objective function values. CPU seconds oh;-regularized logistic loss minimization
tasks.

regularizer is the intervdl-A,A]. The supremum of " p is attained at the interval boundary whose
sign matches that of the corresponding component of the direction ygdtaat is, at\ sign(p;).

Using the stopping criterion suggested by Andrew and Gao (2007), avexeriments until
the averaged relative change in objective function value over the pie@aterations fell below
1075, As shown in Figure 17, the only clear difference in convergence leethires two algorithms
is found on the Astro-physics data set where OWL@dNoutperformed by the original OWL-QN
method. This is because finding a descent direction via Algorithm 2 is particdiéficult on the
Astro-physics data set (as indicated by the large inner loop iteration nugber Table 2); the
slowdown on this data set can also be found in Figure 18 for other vafuesAdthough finding a
descent direction can be challenging for the generic direction-findimgneof OWL-QN, in the
following experiment we show that this routine is very robust to the choideitidl subgradients.

To examine the algorithms’ sensitivity to the choice of subgradients, we abtsthean with
subgradients randomly chosen from thedktw) (as opposed to the specially chosen subgradient
g®" used in the previous set of experiments) fed to their correspondingiditdinding routines.
OWL-QN relies heavily on its particular choice of subgradients, hencaksrdown completely
under these conditions: the only data set where we could even plot itg) (pedormance was
Covertype (dotted “OWL-QNTr” line in Figure 17). Our direction-findingitme, by contrast, is self-
correcting and thus not affected by this manipulation: the curves for @MEr lie on top of those
for OWL-QN*. Table 2 shows that in this case more direction-finding iteratame needed though:
ki,r > ki, This empirically confirms that as long as arg sug ., g'pis given, Algorithm 2 can
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Figure 18: Regularization parameterc {1076,-.. 1071} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value ag-regularized logistic loss min-
imization tasks. (No point is plotted if the initial parameteg = 0 is already optimal.)

indeed be used as a generic quasi-Newton direction-finding routine tableigo recover from a
poor initial choice of subgradients.

8.5 L,-Regularized Multiclass and Multilabel Hinge Loss

We incorporated our exact line search of Section 6.3.1 into both subLBIFG®CAS (Franc and
Sonnenburg, 2008), thus enabling them to deal with multiclass and multilabeklos8e refer
to our generalized version of OCAS as line search BMRM (Is-BMRM). Gshe variant of the
multiclass and multilabel hinge loss which enforces a uniform margin of sipard(z Z) =
1Vvz+#Z), we experimentally evaluated both algorithms on a number of publicly availabdesets
(Table 3). All multiclass data sets except INEX were downloaded finthpr/www.csie.ntu.

edu.tw/ ~ cjlin/libsvmtools/datasets/multiclass.html , while the multilabel data sets were
obtained fromhttp://www.csie.ntu.edu.tw/ ~ ¢jlinflibsvmtools/datasets/multilabel.

html . INEX (Maes et al., 2007) is available frohitp://webia.lip6.fr/ ~ bordes/mywiki/
doku.php?id=multiclass_data . The original RCV1 data set consists of 23149 training instances,
of which we used 21149 instances for training and the remaining 2000stimge

8.5.1 FEERFORMANCE ONMULTICLASS PROBLEMS

This set of experiments is designed to demonstrate the convergencetipopé multiclass sub-
LBFGS, compared to the BMRM bundle method (Teo et al., 2010) and Is-BMRglire 19 shows
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| Data Set || Train/Test Set Siz¢ Dimensionality| |Z| | Sparsity]| A [ k|
Letter 16000/4000 16 26 0.0% || 10°° | 65
USPS 7291/2007 256 | 10| 3.3% || 103 | 14
Protein 14895/6621 357 3| 70.7% || 102 | 1
MNIST 60000/10000 780 10| 80.8% || 103 | 1
INEX 6053/6054 167295 | 18| 99.5% || 10®| 5
News20 15935/3993 62061 | 20| 99.9% || 102 | 12
Scene 1211/1196 294 6 0.0% || 101 | 14
TMC2007 21519/7077 30438 | 22| 99.7% || 10°° | 19
RCV1 21149/2000 47236 | 103 | 99.8% || 10°| 4

Table 3: The multiclass (top 6 rows) and multilabel (bottom 3 rows) data setls vskeies of the
regularization parameter, and overall numbef direction-finding iterations in our exper-
iments of Section 8.5.
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Figure 19: Obijective function values.CPU seconds oh,-regularized multiclass hinge loss mini-
mization tasks.

that subLBFGS outperforms BMRM on all data sets. On 4 out of 6 datasditBFGS outper-
forms Is-BMRM as well early on but slows down later, for an overall perfance comparable to
Is-BMRM. On the MNIST data set, for instance, subLBFGS takes only tabalfias much CPU
time as Is-BMRM to reduce the objective function value to 0.3 (about 50%eathevoptimal value),
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Figure 20: Regularization parameterc {1076,-.. 1071} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value. (No point is plotted if an algamith
failed to reach the threshold value within*i€econds.)

yet both algorithms reach within 2% of the optimal value at about the same tima€rRAgubottom
left). We hypothesize that subLBFGS’ local model (10) of the objectivecfion facilitates rapid
early improvement but is less appropriate for final convergence to tirawp (cf. the discussion in
Section 9). Bundle methods, on the other hand, are slower initially becaysedhd to accumulate
a sufficient number of gradients to build a faithful piecewise linear modtlebbjective function.
These results suggest that a hybrid approach that first runs sk Bten switches to Is-BMRM

may be promising.

Similar to what we saw in the binary setting (Figure 16), Figure 20 shows thalgarithms
tend to converge faster for large valueshofGenerally, subLBFGS converges faster than BMRM
across a wide range afvalues; for small values df it can greatly outperform BMRM (as seen on
Letter, Protein, and News20). The performance of subLBFGS is wbesethat of BMRM in two
instances: on USPS for small values\ofind on INEX for large values &f. The poor performance
on USPS may be caused by a limitation of subLBFGS’ local model (10) thaesatto slow down
on final convergence. On the INEX data set, the initial paigt= 0 is nearly optimal for large
values ofi; in this situation there is no advantage in using subLBFGS.

Leveraging its exact line search (Algorithm 5), Is-BMRM is competitive ordalla sets and
across all\ values, exhibiting performance comparable to subLBFGS in many cases FHg-
ure 20 we find that BMRM never outperforms both subLBFGS and Is-BMRM
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Figure 21: Objective function values. CPU seconds ih,-regularized multilabel hinge loss mini-
mization tasks.

10° Scene Lot TMC2007 Lot RCV1
~ - aBMRM ~ - aBMRM ~ - aBMRM
, o--e1s-BMRM 2 o o--e1s-BMRM . o--e1s-BMRM
210 . =—usubLBFGS|| 10" ™ »—usubLBFGS|| 107 ¢ =—a subLBFGS |
O
§ RN N § §
$ 10! RN 8102 $ 102
= A
10° e 4 10 10! F o]
104 ! ! ! ! ! ! 100 ! ! ! ! 100
10 10° 10* 10%® 10% 10? 10 10° 10* 10° 10%? 107 10 10° 10* 10® 10%? 107
A A A

Figure 22: Regularization parameterc {1076,-..,1071} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value. (No point is plotted if an algatith
failed to reach the threshold value within*€econds.)

8.5.2 FERFORMANCE ONMULTILABEL PROBLEMS

For our final set of experiments we turn to the multilabel setting. Figure 2dstiat on the Scene
data set the performance of SUbLBFGS is similar to that of BMRM, while on tigedld MC2007
and RCVL1 sets, subLBFGS outperforms both of its competitors initially but stimms later on,
resulting in performance no better than BMRM. Comparing performanassdifferent values of
A (Figure 22), we find that in many cases subLBFGS requires more time thaoniigetitors to
reach within 2% of the optimal value, and in contrast to the multiclass settinglshBMRM only
performs marginally better than BMRM. The primary reason for this is that xaetdine search
used by Is-BMRM and subLBFGS requires substantially more computatifiaelie the multilabel
than in the multiclass setting. There is an inherent trade-off here: subSBR@ Is-BMRM expend
computation in an exact line search, while BMRM focuses on improving its loalel of the
objective function instead. In situations where the line search is veryneie the latter strategy

seems to pay off.
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9. Discussion and Outlook

We proposed subBFGS (resp., subLBFGS), an extension of the B&&s jewton method (resp.,
its limited-memory variant), for handling nonsmooth convex optimization problenaspeoved its
global convergence in objective function value. We applied our algorithenvariety of machine
learning problems employing the-regularized binary hinge loss and its multiclass and multilabel
generalizations, as well ds -regularized risk minimization with logistic loss. Our experiments
show that our algorithm is versatile, applicable to many problems, and oftparéarms specialized
solvers.

Our solver is easy to parallelize: The master node computes the seardiodiesw transmits
it to the slaves. The slaves compute the (sub)gradient and loss valubsetsof data, which is
aggregated at the master node. This information is used to compute the arekt digection, and
the process repeats. Similarly, the line search, which is the expensivefphe computation on
multiclass and multilabel problems, is easy to parallelize: The slaves run Algotittnrsubsets of
the data; the results are fed back to the master which can then run Algorithoobpute the step
size.

In many of our experiments we observe that sSubLBFGS decreaseg¢otvabfunction rapidly
at the beginning but slows down closer to the optimum. We hypothesize that ttigito an
averaging effect: Initially (i.e., when sampled sparsely at a coarse scalgerposition of many
hinges looks sufficiently similar to a smooth function for optimization of a quadiatial model
to work well (cf. Figure 6). Later on, when the objective is sampled at fiagolution near the
optimum, the few nearest hinges begin to dominate the picture, making a smodtmémt=l less
appropriate.

Even though the local model (10) of sub(L)BFGS is nonsmooth, it onljiattp models the
hinges at its present location—all others are subject to smooth quadnataxapation. Apparently
this strategy works sufficiently well during early iterations to provide fgidamprovement on
multiclass problems, which typically comprise a large number of hinges. Tha Baation of
the optimum, however, may depend on individual nearby hinges whichoarepresented in (10),
resulting in the observed slowdown.

Bundle method solvers, by contrast, exhibit slow initial progress but termk toompetitive
asymptotically. This is because they build a piecewise linear lower bound afbfleetive func-
tion, which initially is not very good but through successive tightening xadly becomes a faith-
ful model. To take advantage of this we are contemplating hybrid solverswitth over from
sub(L)BFGS to a bundle method as appropriate.

While bundle methods like BMRM have an exact, implementable stopping critergsdlan
the duality gap, no such stopping criterion exists for BFGS and other ¢leagion algorithms.
Therefore, it is customary to use the relative change in function value iagdementable stopping
criterion. Developing a stopping criterion for sub(L)BFGS based otlitgfisEmguments remains an
important open question.

sub(L)BFGS relies on an efficient exact line search. We proposel Iswe searches for the
multiclass hinge loss and its extension to the multilabel setting, based on a catlyegitnple yet
optimal algorithm to segment the pointwise maximum of lines. A crucial assumptiomag/éo
make is that the numbeg| of labels is manageable, as it take§ Z|log| Z|) time to identify the
hinges associated with each training instance. In certain structuredtegiooblems (Tsochan-
taridis et al., 2005) which have recently gained prominence in machine lgathm setZ could
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be exponentially large—for instance, predicting binary labels on a chdiengthn produces 2
possible labellings. Clearly our line searches are not efficient in susdsrave are investigating
trust region variants of sub(L)BFGS to bridge this gap.

Finally, to put our contributions in perspective, recall that we modified tlgeects of the
standard BFGS algorithm, namely the quadratic model (Section 3.1), thentlefseztion find-
ing (Section 3.2), and the Wolfe conditions (Section 3.3). Each of these guaithfis is versatile
enough to be used as a component in other nonsmooth optimization algorithismaofdinly offers
the promise of improving existing algorithms, but may also help clarify connechetween them.
We hope that our research will focus attention on the core subroutinesabd to be made more
efficient in order to handle larger and larger data sets.
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Appendix A. Bundle Search for a Descent Direction

Recall from Section 3.2 that at a subdifferential paimbur goal is to find a descent directigri
which minimizes the pseudo-quadratic modl:

M(p):=3p B 'p+ sup g'p. (59)

gedd(w)

This is generally intractable due to the presence of a supremum over the suibdifferential
0J(w). We therefore propose a bundle-based descent direction findicgdure (Algorithm 2)
which progressively approachiep) from below via a series of convex functiolS? (p), - -- .M (p),
each taking the same form i p) but with the supremum defined over a countable subskk(ab).
At iterationi our convex lower boun¥ () (p) takes the form

MU (p):=3p" B 'p+ sup g'p, where

ge’l/(')
YW= g0 j<i,i,j €N} Cad(w). (60)
Given an iteratgI~Y € RY we find aviolating subgradieng'}) via
g := argsupy "pl—Y. (61)
gcdd(w)

19. For ease of exposition we are suppressing the iteration trikene.
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Violating subgradients recover the true objectép) at the iteratep(i—1:
M(pU—1) =MD (pli-D) = %p(ifl)TBflp(jfl) +gTpli-b, (62)

To produce the iteratgs‘), we rewrite min,.« M (p) as a constrained optimization problem
(19), which allows us to write the Lagrangian of (60) as

L0 (p,&,a):=1p B lp+E—a' (E1-GV p), (63)

whereGW) := [, g@, ... ()] € R% collects past violating subgradients, ands a column
vector of non-negative Lagrange multipliers. Setting the derivative3)fyéth respect to the primal
variablest andp to zero yields, respectively,

a'l1=1 and (64)

p——BGUa. (65)

The primal variablgp and the dual variable: are related via the dual connection (65). To eliminate
the primal variableg andp, we plug (64) and (65) back into the Lagrangian to obtain the dual of

MO (p):

DV (a):=-3(GVa)'B(GVa), (66)

The dual objectivdD) () (resp., primal objectivé! ) (p)) can be maximized (resp., minimized)
exactly via quadratic programming. However, doing so may incur substaotiaputational ex-
pense. Instead we adopt an iterative scheme which is cheap and easyeimémipyet guarantees
dual improvement.

Leta!) € [0,1]' be a feasible solution fdd() («).2° The corresponding primal solutigi’) can
be found by using (65). This in turn allows us to compute the next violatingrsalentg (1 via
(61). With the new violating subgradient the dual becomes

D(i+1)(a) — %(G(i+1)a)TB(G(i+l)a),
st a0, |lali =1, (67)

where the subgradient matrix is now extended:
G(i+1) _ [G<I), g(i+1)]. (68)

Our iterative strategy constructs a new feasible solution [0,1]'** for (67) by constraining it to
take the following form:

= [ (1- ﬁ)a(i) ] , where pe [0,1]. (69)

20. Note thaixV) = 1 is a feasible solution fob(¥) ().
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In other words, we maximize a one-dimensional funcsh : [0,1] — R:

DIt = 1 (G(‘“)a)TB (G(i+1)a> (70)

(1-wg" +ug') B(a-wg" +ug'),

NI

where
gV :=aGc"a € d(w) (71)

lies in the convex hull ofg!)) € 0J(w) Vj <i (and hence in the convex skl(w)) becausea!! e
[0,1)" and||aV||; = 1. Moreoveru € [0,1] ensures the feasibility of the dual solution. Noting that

DU+ (u) is a concave quadratic function, we set

6D<'+1)(u) _ (g—(u) _g(|+1)) B ((1_ n)g—(l) + ng('“)) -0 (72)

to obtain the optimum

(g" — g+ Bg") )) . (73

* . ~(i+1) — mi
K :=argmaxX®'" (1) = min <1,max<0, G0 g D) B(Gh — giD)

pel0,1]
Our dual solution at stept+ 1 then becomes
D) = [ (A=)l } . (74)
u*
Furthermore, from (68), (69), and (71) it follows thg) can be maintained via an incremental
update (Line 8 of Algorithm 2):
g—(i+l) — G(i+l)a(i+l) — (1_ Il*)g_(') + u*g(iﬂ), (75)

which combined with the dual connection (65) yields an incremental updatedg@rimal solution
(Line 9 of Algorithm 2):

p(i+1) — _B§(i+1) _ _(1_ u*)Bg(l) - H*Bg(Hl)
=(1-w)p" —pwrBg™Y. (76)
Using (75) and (76), computing a primal solution (Lines 7-9 of Algorithmdts a total oD(d?)
time (resp.O(md) time for LBFGS with buffer sizen), whered is the dimensionality of the opti-
mization problem. Note that maximizing('”)(a) directly via quadratic programming generally

results in a larger progress than that obtained by our approach.
In order to measure the quality of our solution at iterafiome define the quantity

el = minMUTY (0 —DO(a) = minM(pt) —DW(aM), (77)

j<i I=i
where the second equality follows directly from (62). IDHix) be the corresponding dual prob-
lem of M(p), with the propertyD (["(‘;”]) =D (al), and leta* be the optimal solution to
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argmax,. ; D(a) in some domaing of interest. As a consequence of the weak duality theorem
(Hiriart-Urruty and Lemagchal, 1993, Theorem XII.2.1.5), n)jQRd M(p) > D(a*). Therefore
(77) implies that

e > minM(p) —DV(a) > minM(p)—D(a*) > 0. (78)
peR? peR?

The second inequality essentially says tHitis an upper bound on the duality gap. In fact, The-
orem 7 below shows that() — £(+1) is bounded away from 0, that is{) is monotonically de-
creasing. This guides us to design a practical stopping criterion (LineAdgafithm 2) for our
direction-finding procedure. Furthermore, using the dual connedii®)y; ve can derive an imple-
mentable formula foe(:

el = min[1p0)T B-1p() 4 pITgi+0 1 1 (G0 o) TB(GIal)

= min - 1pT gl 4 pNT gl _ %pa)Tai)}

= min _p<J>Tg(J+1) —L(pTglh 4 pi §<u>)} , (79)
(i+1) = argsumTp(j) and g_(—l) — G(J)a(l) \V/] < i
gedd(w)

where g

It is worth noting that continuous progress in the dual objective valus doenecessarily prevent
an increase in the primal objective value, that is, it is possibleNtat' ) > M(p()). Therefore,
we choose the best primal solution so far,

p :=argminM(p)), (80)
j<i
as the search direction (Line 18 of Algorithm 2) for the parameter updateT(8s direction is a

direction of descent as long as the last iteydtéfu_lfills the descent condition (16). To see this, we
use (88-90) below to get sy, 9 ' P = M(p") +DV(a), and since

M(p") > minM(p?) and DV (V) > DD (a) vj<i,

j<i
definition (80) immediately gives sypsy(,) g P > SUR,cayw) 9 p- Hence ifpll) is a descent
direction, then so ip.
We now show that if the current parameter vecioiis not optimal, then a direction-finding

tolerancee > 0 exists for Algorithm 2 such that the returned search diregiitsa descent direction,
that is, sUgcpyu) 9 ' P < 0.

Lemma 3 Let B be the current approximation to the inverse Hessian maintained by Algodithm
and h> 0 a lower bound on the eigenvalues Bf. If the current iteratew is not optimal: 0 ¢
0J(w), and the number of direction-finding iterations is unlimiteg,{k= ), then there exists a
direction-finding tolerance > 0 such that the descent directipn= —Bg, g € dJ(w) returned by
Algorithm 2 atw satisfiessup,cy() 9 ' P < O.
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Proof Algorithm 2 returnsp afteri iterations where) < e, wheree® = M(p) — DV (")) by
definitions (77) and (80). Using definition (66) bf") (a)), we have

D) = 1 aVa) B(GIal)) = 1507 BgH), (81)

wheregt) = Gal) is a subgradient idJ(w). On the other hand, using (59) and (76), one can
write

M(p) = sup g'p+ 3p'B'p
gedd(w)

= sup g'p+ 3g Bg, where gedl(w). (82)
gedd(w)

Putting together (81) and (82), and usiBg- h, one obtains

- I . . h h .
e = sup g'p+ 15 Bg+ 13" Bg" > sup g'p+3lgI2+ SV 2 (83)
geod(w) gedd(w)

Since0 ¢ 0J(w), the last two terms of (83) are strictly positive; and by (%8),> 0 . The claim
follows by choosing a& such thatvi) 3(||g]>+|lg|?) > € >¢€l) > 0. u

Using the notation from Lemma 3, we show in the following corollary that a strigpgrer
bound one allows us to bound syp,;(,,) g p in terms ofg™ Bg and||g]|. This will be used in
Appendix D to establish the global convergence of the subBFGS algorithm.

Corollary 4 Under the conditions of Lemma 3, there existsan0 for Algorithm 2 such that the
search directiorp generated by Algorithm 2 satisfies

 _ h
sup g'p < —39'Bg < —5g]*< O (84)
gedd(w)

Proof Using (83), we have

.y o ho_.
(i) eV > sup g'p+ 39" Bg + 59" |1
gead(w)

The first inequality in (84) results from choosing&asuch that
N L (i)
(i) 51g" 7 2 € = €V > 0. (85)

The lower boundch > 0 on the spectrum oB vyields the second inequality in (84), and the third
follows from the fact that|g]| > O at non-optimal iterates. [ |
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Appendix B. Convergence of the Descent Direction Search

Using the notation established in Appendix A, we now prove the conveegein&lgorithm 2 via
several technical intermediate steps. The proof shares similarities withabts fiound in Smola
et al. (2007), Shalev-Shwartz and Singer (2008), and Warmuth &Qfl8]. The key idea is that at
each iterate Algorithm 2 decreases the upper baiihdn the distance from the optimality, and the
decrease i) is characterized by the recurrerg® — e+ > ¢(e())2 with ¢ > 0 (Theorem 7).
Analysing this recurrence then gives the convergence rate of thatatgdiTheorem 9).

We first provide two technical lemmas (Lemma 5 and 6) that are needed t® phaorem 7.

Lemma 5 LetD(*+ () be the one-dimensional function defined@), ande) the positive mea-
sure defined irf77). Thene® < aD(+Y(0).

Proof Let p() be our primal solution at iteratioi derived from the dual solutioa!) using the
dual connection (65). We then have

pi) = —Bgh where gt = Glal). (86)

M(p?) = 1p@ B1p0) 4p0) gli+D), (87)
where
g = argsup ' p". (88)
gedd(w)
Using (86), we havdB~1p() = —B~1Bgl) = —gl), and hence (87) becomes
M(p") = p g+ —3pl) gl (89)
Similarly, we have
DI(al) = —1(@Va) B(GVa) = 1p0 g0, (90)

From (72) and (86) it follows that
oD (0) = (g — g Bg" = (g —g")Tpl, (91)

whereg(t1 is a violating subgradient chosen via (61), and hence coincides with((88)g (89)—
(91), we obtain

M(p») — D0 () = (g<i+1>_ g—<i>>Tp<i) — aD(+)(0). (92)
Together with definition (77) o€, (92) implies that
el = minM(p')) — DO (au)

I<i

< M(p(i))—D(i)(a(i)) - 65(i+1)(o)_
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Lemma6 Let f:[0,1] — R be a concave quadratic function wit(®f) = 0, af(0) € [0,a], and

2
9f%(x) > —a for some & 0. Thenmax,c o f(x) > @,

Proof Using a second-order Taylor expansion around 0, we Haxg > of(0)x — 5x2. x* =
0f(0)/ais the unconstrained maximum of the lower bound. Sthid®) < [0,a], we havex* € [0,

1].
Pluggingx* into the lower bound yield& f (0))?/(2a). [

Theorem 7 Assume that atv the convex objective function RY — R has bounded subgradient:
|0d(w)|| < G, and that the approximatio® to the inverse Hessian has bounded eigenvalues:
B <H. Then

(20

() _ gli+D)
©TE S s

Proof Recall that we constrain the form of feasible dual solutionf6rY () as in (69). Instead
of DY (a), we thus work with the one-dimensional concave quadratic fun@ibrd (p) (70). It
is obvious tha "5(') is a feasible solution fab(+Y (). In this caseD1V(0) = DO (a). (74)
implies thatD(+9 (1) = D0+ (1), Using the definition (77) oV, we thus have

S(i) —8(i+1> > D(i-l—l)(a(i-‘rl)) —D(I)(a(l>) _ _(i+l)(u*) _5(i+1)(0)' (93)

It is easy to see from (93) that) — e+ are upper bounds on the maximal value of the concave

quadratic functionf (W) := D(+% (i) — D+ (0) with p € [0,1] and f(0) = 0. Furthermore, the
definitions ofDU+Y () and f () imply that

9f(0) = DD (0) = (g0 —g+*V)TBg!) and (94)
azf(u) - 025(i+1)(“) _ _(g(i)_g(i—&-l))TB(g(i)_g(i-&-l)).
Since||dd(w)|| < G andg™ € dJ(w) (71), we have|gh) — g(+D|| < 2G. Our upper bound on the

spectrum ofB then givesdf (0)| < 2G?H and|9?f(p)| < 4G?H. Additionally, Lemma 5 and the
fact thatB > 0 imply that
0f(0) = DY (0) >0 and 8°f(y) = 8°DI+Y () <0, (95)

which means that
0f(0) € [0,2G?H] C [0,4G?H] and 9*f(n) > —4G?H.
Invoking Lemma 6, we immediately get

. . 01 (0))2 oD+ (0))2
gl _gli+1) (SG(ZIL) _ 8G2I-(I )* (96)

Sincee < aD(+1)(0) by Lemma 5, the inequality (96) still holds whab(+1)(0) is replaced with
), [ ]
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(94) and (95) imply that the optimal combination coefficigh{73) has the property

M =min |1

06(i+1) (0)
2D D () |

Moreover, we can use (65) to reduce the cost of computintny settingBg'" in (73) to be—p()
(Line 7 of Algorithm 2), and calculate
g7 p) _ giT pl)

gi+UT Bigli+1) 42 gi+)Tp(i) — gli)Tp(0) |7 ®7)

K =min [1,

whereB;gl*Y can be cached for the update of the primal solution at Line 9 of Algorithm 2.
To prove Theorem 9, we use the following lemma proven by induction by Alz. 2001,
Sublemma 5.4):

Lemma 8 Let {e), £ ...} be a sequence of non-negative numbers satisfyirgN the recur-
rence

S(i) _8(i+1) > C(S(i)>2

)

where ce R, is a positive constant. Then € N we have

e < — =
c(i+)

We now show that Algorithm 2 decreas#t to a pre-defined toleranegn O(1/¢) steps:

Theorem 9 Under the assumptions of Theorem 7, Algorithm 2 converges to the dipsireisione
after

8G2H
< _

1<t < 4
€

steps for ang < 2G?H.
Proof Theorem 7 states that

(e

(i) _gli+D)
€ TE T 2 e

wheree() is non-negativeyi € N by (78). Applying Lemma 8 we thus obtain
1

- 1
(i) - —_ -
el < here c:= ) 98
(¢

Our assumptions ojdJ(w)|| and the spectrum dB imply that

D(i+l)(o) _ (g(i)_g(iJrl))TBg i) < 2G2H.
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Hencee!) < 2G2H by Lemma 5. This means that (98) holds wét®) = 2G?H. Therefore we can
solve

e<— T with ci= and e := 2G°H (99)

1
_c<t+€T1)C) 8G?H

to obtain an upper bound disuch thatVi >t) £) < & < 2G?H. The solution to (99) is< 8&H —4.
|

Appendix C. Satisfiability of the Subgradient Wolfe Conditions

To formally show that there always is a positive step size that satisfies Iigeaglient Wolfe con-
ditions (23, 24), we restate a result of Hiriart-Urruty and Leachial (1993, Theorem VI1.2.3.3) in
slightly modified form:

Lemma 10 Given two pointsw # w’ in RY, definew, = nw’ + (1 —n)w. Let J: R — R be
convex. There existse (0,1) andg € dJ(wy) such that

Jw)—I(w) = §'(w' ~w) < §'(w' ~w),
whereg = argsupcoy () 9' (W' —w).

Theorem 11 Letp be a descent direction at an iterate. If ®(n) := J(w +np) is bounded below,
then there exists a step sige> 0 which satisfies the subgradient Wolfe conditions (23, 24).

Proof Sincep is a descent direction, the linKw) + ¢1N SURyca(a) g'p with ¢; € (0,1) must
intersect®d(n) at least once at somg > 0 (see Figure 1 for geometric intuition). Lat be the
smallest such intersection point; then

J(w+n'p) = I(w) + cin’ sup g'p. (100)
gedd(w)

Since®(n) is lower bounded, the sufficient decrease condition (23) holds fqf'all[0,n’]. Setting
w’ =w+n'pin Lemma 10 implies that there exists ghe (0,n’) such that

Jw+n'p) —I(w) <n’  sup ng. (101)
g<€dd(w+n"p)

Plugging (100) into (101) and simplifying it yields

cosupg'p < sup g'p. (102)
gedd(w) g€dd(w+n"p)

Sincep is a descent direction, Syi;(., g'p <0, and thus (102) also holds whenis replaced
by cs € (c1,1). [ |
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Algorithm 6 Algorithm 1 of Birge et al. (1998)
1: Initialize: t := 0 andwyg
2: while not convergedlo
3 Find w;; that obeys

Jweir) < I(wr) — allgg|* + & (104)
where gg € 0gJ(wi 1), & > 0, &,g > 0.

4: ti=t+1
5: end while

Appendix D. Global Convergence of SubBFGS

There are technical difficulties in extending the classical BFGS comreegaroof to the nonsmooth
case. This route was taken by Andrew and Gao (2007), which untaglyrieft their proof critically
flawed: In a key step (Andrew and Gao, 2007, Equation 7) they seeadtdblish the non-negativity
of the directional derivativef’(x;q) of a convex functionf at a pointxin the directiong, where
x andq are the limit points of convergent sequend&$} and {G<}«, respectively. They do so by
taking the limit fork € k of

/(X486 6 > yf'(x:§), where {6} -0 andye (0,1),
which leads them to claim that

f'(a) > yf'(xa), (103)

which would imply f'(X;q) > 0 because € (0,1). However, f'(xX,§¢) does not necessarily con-
verge tof’(x;q) because the directional derivative of a nonsmooth convex functiort isombinu-
ous, onlyupper semi-continuou8ertsekas, 1999, Proposition B.23). Instead of (103) we thus only
have

f/(x.q > ylimsupf’(x;§"),

k—c0 kek

which does not suffice to establish the desired redulk; q) > 0. A similar mistake is also found
in the reasoning of Andrew and Gao (2007) just after Equation 7.

Instead of this flawed approach, we use the technique introduced ey &ied. (1998) to prove
the global convergence of subBFGS (Algorithm 1) in objective functialue, that isJ(w;) —
inf,, J(w), provided that the spectrum of BFGS’ inverse Hessian approxim&josbounded from
above and below for atl and the step sizg; (obtained at Line 9) is not summablg;> Nt = oo.

Birge et al. (1998) provide a unified framework for convergencdyaisof optimization algo-
rithms for nonsmooth convex optimization, based on the notiasrsafbgradients Formally, g is
called are-subgradient of atw iff (Hiriart-Urruty and Lemaéchal, 1993, Definition X1.1.1.1)

(V') J(w') > I(w)+ (w' —w)' g—¢, wheree> 0. (105)

The set of alk-subgradients at a point is called thes-subdifferential, and denotedJ(w). From
the definition of subgradient (7), it is easy to see W#tw) = dpJ(w) C deJ(w). Birge et al.
(1998) propose ae-subgradient-based algorithm (Algorithm 6) and provide sufficientitmms
for its global convergence:
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Theorem 12 (Birge et al., 1998, Theorem 2.1(iv), first sentence)
Let J: RY — RU{w} be a proper lower semi-continuctisextended-valued convex function, and
let { (&, &, &, wt11,9¢) } be any sequence generated by Algorithm 6 satisfying

[ee]

t;st <o and tiat =00, (106)

If & — 0, and there exists a positive numir- 0 such that, for all large t,

Bllwtrr —wil| < allggll, (107)

then Jwi) — infy, J(w).

We will use this result to establish the global convergence of subBFGSdnrém 14. Towards
this end, we first show that subBFGS is a special case of Algorithm 6:

Lemma 13 Let p; = —Big; be the descent direction produced by Algorithm 2 at a non-optimal
iterate wy, whereB; = h > 0 and g; € 0J(w), and letwy 1 = wy + Nepr, wheren; > 0 satisfies
sufficient decreasg3) with free parameter ce (0,1). Thenw 1 obeys(104)of Algorithm 6 for

a := 2" g =0, ande] == ni(1— $) g Biar.

Proof Our sufficient decrease condition (23) and Corollary 4 imply that

C — —
Iweer) < Iw) - LG Bigy (108)

< J(wx) — al|gt||®, wherea; =

What is left to prove is thagy € g J(wt 1) for ang > 0. Usingg: € dJ(wy) and the definition (7)
of subgradient, we have

(Vw) J(w) >

I(w) + (w—wy) gt

= J(ws1) + (w—wii1) g + I(w) — I(wisr) + (wipr —wy) ge.-
Usingwy,1 —w; = —NtBrgt and (108) gives
Nt L
(V) J(w) > J(wii1) + (w—wi1) g + lTr]tgtTBtgt — Nt g Bigt
= J(wry1) + (w —wt+1)T§ — g,

whereg{ :=n¢(1— %)g_tTBtgt. Sincen; >0, ¢, < 1, andB; = h > 0, € is non-negative. By the
definition (105) ofe-subgradientg; € dgJ(wi1). [ |

21. This means that there exists at least ane RY such that)(w) < «, and that for alw € RY, J(w) > —w and
J(w) < liminfi_» J(wt) for any sequencéw } converging tow. All objective functions considered in this paper
fulfill these conditions.
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Theorem 14 Let J: RY — RU{e} be a proper lower semi-continuctisextended-valued convex
function. Algorithm 1 with a line search that satisfies the sufficient decreaseéition (23) with
c1 € (0,1) converges globally to the minimal value of J, provided that:

1. the spectrum of its approximation to the inverse Hessian is bounded ahdwbelow3 (h,H :
O0<h<H<o):(Vt)h<B{=<H

2. the step sizg; > 0 satisfiesy > ynt = o, and

3. the direction-finding tolerancefor Algorithm 2 satisfie$85).

Proof We have already shown in Lemma 13 that SubBFGS is a special case oitiig6ér Thus if
we can show that the technical conditions of Theorem 12 are met, it diresttbleshes the global
convergence of subBFGS.

Recall that for sSUbBFG&, := Clg‘h, & =0,& :=n(1—%)g{ Bigt, andg; = g¢;. Our assump-
tion onn implies thaty > pa = %h Si—oNt = %, thus establishing (106). We now show tbat- 0.
Under the third condition of Theorem 14, it follows from the first inequality84) in Corollary 4
that

sup g'pt < —3g/ B, (109)
g€0I(ux)
wherep; = —Bigt, gt € 0J(wy) is the search direction returned by Algorithm 2. Together with the
sufficient decrease condition (23), (109) implies (108). Now use)(f€dirsively to obtain

L
J(wir1) < I(wo) — %i;nigi—rBigi-

Sincel is proper (hence bounded from below), we have
o0} - _ 1 (o)
t= 2 t=
Recall thate] > 0. The bounded sum of non-negative terms in (110) implies that the terms in the
sum must converge to zero.
Finally, to show (107) we usa1 — w; = —n: Bt gt, the definition of the matrix normi|B|| :=

MaX,—o ”ﬁ;ﬁ” , and the upper bound on the spectruni3fto write:

lwirs —wi| = nel|Begel] < niel|Bellllgel] < neHllgell- (111)

Recall thatg = g¢; anda; = %Zth and multiply both sides of (111) bgﬁh to obtain (107) with
B:=gh [

Appendix E. SUbBFGS Converges on Various Counterexamples

We demonstrate the global convergence of subBE@&h an exact line search on various coun-
terexamples from the literature, designed to show the failure to converginef gradient-based
algorithms.

22. We run Algorithm 1 witth = 108 ande = 10~°.
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Figure 23: Optimization trajectory of steepest descent (left) and subBR@H) on counterexam-
ple (112).

E.1 Counterexample for Steepest Descent

The first counterexample (112) is given by Wolfe (1975) to show theawmvergent behaviour of
the steepest descent method with an exact line search (denoted GD):

f(y) = {5\/(9x2+16y2) it x>y, 112

9x+ 16ly| otherwise

This function is subdifferentiable along< 0, y = 0 (dashed line in Figure 23); its minimal value
(—o) is attained forx = —c. As can be seen in Figure 23 (left), starting from a differentiable
point (2,1), GD follows successively orthogonal directions, that-$]f(x,y), and converges to
the non-optimal poin{0,0). As pointed out by Wolfe (1975), the failure of GD here is due to the
fact that GD does not have a global view ©f specifically, it is because the gradient evaluated
at each iterate (solid disk) is not informative ab@dt0,0), which contains subgradients (e.g.,
(9,0)), whose negative directions point toward the minimum. SubBFGS overconse'skiort-
sightedness” by incorporating into the parameter update (3) an estBaatithe inverse Hessian,
whose information about the shapefofrevents subBFGS from zigzagging to a non-optimal point.
Figure 23 (right) shows that subBFGS moves to the correct regiar0j at the second step. In fact,
the second step of subBFGS lands exactly on the hing®,y = 0, where a subgradient pointing
to the optimum is available.

E.2 Counterexample for Steepest Subgradient Descent

The second counterexample (113), due to Hiriart-Urruty and Leata (1993, Section VIII.2.2),
is a piecewise linear function which is subdifferentiable alorgy= +3x andx = 0 (dashed lines
in Figure 24):

f(x,y) := max{—100, +2x-+ 3y, +5x+ 2y}. (113)

This example shows that steepest subgradient descent with an exaszdirod (denoted subGD)
may not converge to the optimum of a nonsmooth function. Steepest sigrgrddscent updates
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Figure 24: Optimization trajectory of steepest subgradient descentdlettsubBFGS (right) on
counterexample (113).
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Figure 25: Optimization trajectory of standard BFGS (left) and subBFG8tjran counterexam-
ple (114).

parameters along theteepest descentibgradient direction, which is obtained by solving the min-
sup problem (13) with respect to the Euclidean norm. Clearly, the minimal wdildig—100) is
attained for sufficiently negative values ypf However, subGD oscillates between two hinges 0

y = +3x, converging to the non-optimal poif®,0), as shown in Figure 24 (left). The zigzagging
optimization trajectory of subGD does not allow it to land on any informativétipossuch as the
hingey = 0, where the steepest subgradient descent direction points to theddegjiien § < 0);
Hiriart-Urruty and Lema&chal (1993, Section VIII.2.2) provide a detailed discussion. By cenhtra
subBFGS moves to thg< 0 region at the second step (Figure 24, right), which ends at the point
(100, —300) (not shown in the figure) where the minimal valuefaf attained .
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E.3 Counterexample for BFGS

The final counterexample (114) is given by Lewis and Overton (20@8bhow that the standard
BFGS algorithm with an exact line search can break down when encountenonsmooth point:

f(x,y) :=max{2|x| +Y, 3y}. (114)

This function is subdifferentiable along= 0, y < 0 andy = |x| (dashed lines in Figure 25). Figure
25 (left) shows that after the first step, BFGS lands on a nonsmooth poiatevitifails to find a
descent direction. This is not surprising because at a nonsmoothptietquasi-Newton direction

p := —Bg for a given subgradiery € dJ(w) is not necessarily a direction of descent. SUbBFGS
fixes this problem by using a direction-finding procedure (Algorithm 2)jcWv is guaranteed to
generate a descent quasi-Newton direction. Here subBFGS cosvterige — in three iterations
(Figure 25, right).
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