1 unstable release
new 0.1.16 | Sep 18, 2025 |
---|
#3 in #memory-optimization
415KB
7K
SLoC
KotobaDB Memory Optimization
Advanced memory management and optimization features for KotobaDB, providing intelligent memory pooling, caching strategies, and garbage collection optimization.
ð Features
- Memory Pooling: Efficient object pooling and slab allocation
- Intelligent Caching: Multi-strategy caching with LRU, LFU, and adaptive policies
- Memory Profiling: Real-time memory usage analysis and leak detection
- GC Optimization: Garbage collection tuning and performance optimization
- Custom Allocators: Jemalloc, Mimalloc, and custom arena allocators
- Performance Monitoring: Comprehensive memory performance metrics
ð Memory Optimization Components
Memory Pooling
- Slab Allocation: Fixed-size object allocation for reduced fragmentation
- Arena Allocation: Temporary allocation arenas for bulk operations
- Object Pooling: Reuse of frequently allocated objects
- Fragmentation Control: Memory layout optimization to reduce fragmentation
Intelligent Caching
- Multiple Policies: LRU, LFU, FIFO, and adaptive cache eviction
- Multi-level Caching: Memory and disk-based caching strategies
- Access Pattern Analysis: Learning from usage patterns for optimal caching
- TTL and Size Management: Configurable cache expiration and size limits
Memory Profiling
- Real-time Monitoring: Live memory usage tracking
- Leak Detection: Automatic identification of memory leaks
- Allocation Hotspots: Analysis of high-allocation code paths
- Temporal Analysis: Memory usage patterns over time
GC Optimization
- Adaptive Tuning: Dynamic GC parameter adjustment
- Pause Time Optimization: Minimizing GC-induced application pauses
- Efficiency Analysis: Measuring GC effectiveness and overhead
- Collection Strategy: Optimal GC algorithm selection and configuration
ð Quick Start
Basic Memory Optimization
use kotoba_memory::{MemoryOptimizer, MemoryConfig};
let config = MemoryConfig {
enable_pooling: true,
pool_size_mb: 256,
enable_caching: true,
cache_size_mb: 512,
cache_policy: kotoba_memory::CachePolicy::Adaptive,
enable_custom_allocators: false,
..Default::default()
};
let mut optimizer = MemoryOptimizer::new(config);
optimizer.start().await?;
// Your application code here
run_my_database_operations().await;
let report = optimizer.stop().await?;
println!("{}", report.summary());
Memory Pooling
use kotoba_memory::memory_pool::{MemoryPool, MemoryBlock};
// Create a memory pool
let pool = MemoryPool::new(64 * 1024 * 1024); // 64MB pool
// Allocate from pool
let block = pool.allocate(1024)?; // 1KB allocation
assert_eq!(block.size(), 1024);
// Use the memory
let slice = block.as_slice();
// ... use slice ...
// Automatic deallocation when block goes out of scope
drop(block);
Intelligent Caching
use kotoba_memory::cache_manager::{CacheManager, CachePolicy, CachedValue};
use std::time::{Duration, Instant};
let cache = CacheManager::new(100 * 1024 * 1024, CachePolicy::Adaptive); // 100MB cache
let value = CachedValue {
data: vec![1, 2, 3, 4, 5],
metadata: CacheMetadata {
content_type: "binary".to_string(),
size_bytes: 5,
compression_ratio: None,
checksum: None,
},
access_count: 0,
last_access: Instant::now(),
created_at: Instant::now(),
ttl: Some(Duration::from_secs(3600)), // 1 hour TTL
};
// Store in cache
cache.put("my_key".to_string(), value);
// Retrieve from cache
if let Some(cached_value) = cache.get("my_key") {
println!("Cache hit! Data: {:?}", cached_value.data);
}
Custom Allocators
use kotoba_memory::allocators::{create_custom_allocator, create_monitored_allocator};
// Create a custom arena allocator
let arena_allocator = create_custom_allocator();
// Wrap with monitoring
let monitored_allocator = create_monitored_allocator(arena_allocator);
// Use allocator
let layout = std::alloc::Layout::from_size_align(1024, 8)?;
let ptr = monitored_allocator.allocate(layout)?;
// Check statistics
let stats = monitored_allocator.stats();
println!("Allocations: {}, Peak usage: {} bytes",
stats.allocations, stats.peak_usage);
GC Optimization
use kotoba_memory::gc_optimizer::GcOptimizer;
use std::time::Duration;
let mut gc_optimizer = GcOptimizer::new();
gc_optimizer.start().await?;
// Record GC events (in real usage, this would be automatic)
gc_optimizer.record_collection(
Duration::from_millis(45), // pause time
10_000_000, // bytes reclaimed
0 // generation
);
// Analyze GC performance
let analysis = gc_optimizer.analyze().await?;
println!("GC Performance Score: {:.2}", analysis.performance_score);
// Apply optimizations
gc_optimizer.optimize().await?;
ð Configuration Options
Memory Configuration
let config = MemoryConfig {
enable_pooling: true,
pool_size_mb: 256,
enable_caching: true,
cache_size_mb: 512,
cache_policy: CachePolicy::Adaptive,
enable_custom_allocators: true,
allocator_type: AllocatorType::Custom,
enable_gc_optimization: true,
target_memory_usage_percent: 75.0,
monitoring_interval_ms: 1000,
};
Cache Policies
- LRU (Least Recently Used): Evicts least recently accessed items
- LFU (Least Frequently Used): Evicts least frequently accessed items
- FIFO (First In, First Out): Evicts oldest items first
- Adaptive: Learns from access patterns to choose optimal eviction
Allocator Types
- System: Standard system allocator
- Jemalloc: Facebook's jemalloc (needs
jemalloc
feature) - Mimalloc: Microsoft mimalloc (needs
mimalloc
feature) - Custom: Arena-based custom allocator
ð Analysis and Monitoring
Memory Usage Analysis
let stats = optimizer.memory_stats().await;
println!("Current memory: {:.1} MB", stats.current_memory_mb);
println!("Peak memory: {:.1} MB", stats.peak_memory_mb);
println!("Memory efficiency: {:.1}%", stats.memory_efficiency * 100.0);
Cache Performance Analysis
let cache_analysis = cache.analyze();
println!("Cache hit rate: {:.1}%", cache_analysis.stats.hit_rate * 100.0);
println!("Cache effectiveness: {:.1}%", cache_analysis.cache_effectiveness * 100.0);
for recommendation in &cache_analysis.recommendations {
println!("ðĄ {}", recommendation);
}
GC Performance Analysis
let gc_analysis = gc_optimizer.analyze().await?;
println!("GC bottlenecks: {}", gc_analysis.bottlenecks.len());
for bottleneck in &gc_analysis.bottlenecks {
println!("ð§ {} (Severity: {:.1})",
bottleneck.description, bottleneck.severity);
}
ðïļ Advanced Usage
Custom Memory Pools
// Create specialized pools for different object sizes
let small_pool = MemoryPool::new(16 * 1024 * 1024); // 16MB for small objects
let large_pool = MemoryPool::new(128 * 1024 * 1024); // 128MB for large objects
// Use appropriate pool based on size
let block = if size <= 4096 {
small_pool.allocate(size)?
} else {
large_pool.allocate(size)?
};
Multi-Level Caching
// L1 cache (fast, small)
let l1_cache = CacheManager::new(64 * 1024 * 1024, CachePolicy::Lru);
// L2 cache (slower, larger)
let l2_cache = CacheManager::new(512 * 1024 * 1024, CachePolicy::Adaptive);
// Implement cache hierarchy
fn get_with_hierarchy(key: &str) -> Option<CachedValue> {
// Try L1 first
if let Some(value) = l1_cache.get(key) {
return Some(value);
}
// Try L2
if let Some(value) = l2_cache.get(key) {
// Promote to L1 for faster future access
l1_cache.put(key.to_string(), value.clone());
return Some(value);
}
None
}
Memory Leak Detection
let profiler = memory_profiler::MemoryProfiler::new();
profiler.start().await?;
// Run application workload
run_workload().await;
// Analyze for leaks
let analysis = profiler.analyze().await?;
for leak in &analysis.memory_leaks {
println!("ðĻ Memory leak detected:");
println!(" Size: {} bytes", leak.size);
println!(" Location: {}", leak.allocation_site);
println!(" Age: {:.1} seconds", leak.age_seconds);
}
GC Tuning Recommendations
let recommendations = gc_optimizer.analyze().await?
.optimization_opportunities;
for rec in recommendations {
if rec.expected_benefit > 0.3 && matches!(rec.risk_level, RiskLevel::Low) {
println!("ðŊ {}: {}", rec.optimization_type, rec.description);
println!(" Expected benefit: {:.0}%", rec.expected_benefit * 100.0);
for action in &rec.actions {
println!(" âĒ {}", action);
}
}
}
ð Performance Metrics
Memory Pooling Metrics
- Allocation Efficiency: Ratio of used to allocated memory
- Fragmentation Ratio: Measure of memory fragmentation
- Hit Rate: Percentage of allocations served from pool
- Average Allocation Time: Time spent in allocation operations
Caching Metrics
- Hit Rate: Percentage of cache lookups that succeed
- Hit Latency: Time to retrieve cached items
- Miss Latency: Time to fetch uncached items
- Eviction Rate: Rate at which items are evicted from cache
GC Metrics
- Pause Time: Time application is paused for GC
- Collection Frequency: How often GC runs
- Efficiency: Memory reclaimed per unit GC time
- Generational Statistics: Performance by GC generation
Memory Profiling Metrics
- Allocation Rate: Objects allocated per second
- Deallocation Rate: Objects deallocated per second
- Memory Growth Rate: Rate of memory usage increase
- Leak Detection Accuracy: Effectiveness of leak detection
ðŽ Technical Details
Memory Pool Implementation
- Slab Allocation: Pre-allocated memory chunks for fixed sizes
- Buddy System: Efficient allocation of variable-sized blocks
- Arena Allocation: Bulk allocation for temporary data
- Defragmentation: Periodic memory reorganization
Cache Architecture
- Concurrent Access: Thread-safe cache operations
- Size Management: Automatic eviction based on size limits
- TTL Support: Time-based cache expiration
- Compression: Optional data compression for storage efficiency
GC Optimization Strategies
- Concurrent GC: Run GC concurrently with application
- Generational Collection: Different strategies for different object ages
- Heap Tuning: Optimal heap size and generation ratios
- Allocation Site Optimization: Improve object allocation patterns
Custom Allocators
- Jemalloc: Low fragmentation, good multithreading performance
- Mimalloc: Microsoft allocator with good overall performance
- Arena Allocator: Fast allocation for temporary objects
- Monitoring: Performance tracking for all allocators
ð Performance Targets
Memory Pooling
- Allocation Speed: <10ns for pooled allocations
- Fragmentation: <5% internal fragmentation
- Memory Overhead: <1% metadata overhead
- Concurrency: Lock-free allocation for most cases
Caching
- Hit Latency: <1Ξs for memory cache hits
- Hit Rate: >80% for well-tuned caches
- Memory Efficiency: <10% cache metadata overhead
- Scalability: Linear scaling with cache size
GC Optimization
- Pause Times: <50ms for 95th percentile
- Throughput Impact: <5% application throughput reduction
- Memory Reclamation: >90% of unreachable objects collected
- Tuning Time: <1 second for parameter optimization
Memory Profiling
- Overhead: <2% CPU and memory overhead
- Leak Detection: >95% accuracy for leak identification
- Real-time Analysis: <100ms for memory snapshot analysis
- Historical Tracking: Continuous monitoring with minimal retention
ðïļ Optimization Impact Examples
Memory Pooling Benefits
Before: 50,000 allocations/sec, 15% fragmentation
After: 200,000 allocations/sec, 2% fragmentation
Impact: 4x allocation throughput, 87% fragmentation reduction
Intelligent Caching
Before: 40% cache hit rate, 25ms avg response time
After: 85% cache hit rate, 8ms avg response time
Impact: 2.1x cache efficiency, 68% response time improvement
GC Optimization
Before: 150ms max pause time, 25 GC/min
After: 35ms max pause time, 8 GC/min
Impact: 4.3x pause time reduction, 68% GC frequency reduction
Memory Leak Prevention
Before: 500MB memory growth over 1 hour, OOM crashes
After: Stable 200MB usage, no OOM events
Impact: 60% memory usage reduction, eliminated OOM crashes
Remember: Measure, analyze, optimize, repeat! ðâĄð§
ð§ Build Features
Enable optional features in your Cargo.toml
:
[dependencies]
kotoba-memory = { version = "0.1.0", features = ["jemalloc", "mimalloc"] }
Available features:
jemalloc
: Enable jemalloc allocator supportmimalloc
: Enable mimalloc allocator supportcluster
: Enable cluster-aware memory optimization
Dependencies
~29â64MB
~1M SLoC