
Log-Linear Models for Label Ranking

Ofer Dekel
Computer Science & Eng.

Hebrew University
oferd@cs.huji.ac.il

Christopher D. Manning
Computer Science Dept.

Stanford University
manning@cs.stanford.edu

Yoram Singer
Computer Science & Eng.

Hebrew University
singer@cs.huji.ac.il

Abstract

Label ranking is the task of inferring a total order over a predefined set of
labels for each given instance. We present a general framework for batch
learning of label ranking functions from supervised data. We assume that
each instance in the training data is associated with a list of preferences
over the label-set, however we do not assume that this list is either com-
plete or consistent. This enables us to accommodate a variety of ranking
problems. In contrast to the general form of the supervision, our goal is
to learn a ranking function that induces a total order over the entire set
of labels. Special cases of our setting are multilabel categorization and
hierarchical classification. We present a general boosting-based learning
algorithm for the label ranking problem and prove a lower bound on the
progress of each boosting iteration. The applicability of our approach is
demonstrated with a set of experiments on a large-scale text corpus.

1 Introduction

This paper discusses supervised learning of label rankings – the task of associating in-
stances with a total order over a predefined set of labels. The ordering should be performed
in accordance with some notion of relevance of the labels. That is, a label deemed relevant
to an instance should be ranked higher than a label which is considered less relevant. With
each training instance we receive supervision given as a set of preferences over the labels.
Concretely, the supervision we receive with each instance is given in the form of a prefer-
ence graph: a simple directed graph for which the labels are the graph vertices. A directed
edge from a label y to another label y′ denotes that according to the supervision, y is more
relevant to the instance than y′. We do not impose any further constraints on the structure
of the preference graph.

The approach we employ distills and generalizes several learning settings. The simplest
setting is multiclass categorization in which each instance is associated with a single label
out of k possible labels. Such a setting was discussed for instance in [10] where a boost-
ing algorithm called AdaBoost.MR (MR stands for Multiclass Ranking) for solving this
problem was described and analyzed. Using the graph representation for multiclass prob-
lems, the preference graph induced by the supervision has k vertices and k − 1 edges. A
directed edge points from the (single) relevant label to each of the k − 1 irrelevant labels
(Fig. 1a). An interesting and practical generalization of multiclass problems is multilabel
problems [10, 6, 4], in which a set of relevant labels (rather than a single label) is associ-
ated with each instance. In this case the supervision is represented by a directed bipartite

1

2 3 4 5

1

3 4 5

2

1

2 3

4 5

1
2

3

4
5

(a) (b) (c) (d)

Figure 1: The supervision provided to the algorithm associates every training instance with
a preference graph. Different graph topologies define different learning problems. Exam-
ples that fit naturally in our generalized setting: (a) multiclass single-label categorization
where 1 is the correct label. (b) multiclass multilabel categorization where {1, 2} is the set
of correct labels. (c) A multi-layer graph that encodes three levels of label “goodness”, use-
ful for instance in hierarchical multiclass settings. (d) a general (possibly cyclic) preference
graph with no predefined structure.

graph where the relevant labels constitute one side of the graph and the irrelevant labels
the other side and there is a directed edge from each relevant label to each irrelevant la-
bel. (Fig. 1b). Similar settings are also encountered in information retrieval and language
processing tasks. In these settings the set of labels contains linguistic structures such as
tags and parses [1, 12] and the goal is to produce a total order over, for instance, candidate
parses. The supervision might consist of information that distinguishes three goodness lev-
els (Fig. 1c); for instance, the Penn Treebank [13] has notations to mark not only the most
likely correct parse implicitly opposed to incorrect parses, but also to mark other possibly
correct parses involving different phrasal attachments (additional information that almost
all previous work in parsing has ignored). Additionally, one can more fully rank the quality
of the many candidate parses generated for a sentence based on how many constituents
or dependencies each shares with the correct parse – much more directly and effectively
approaching the metrics on which parser quality is usually assessed. For concreteness, we
use the term label ranking for all of these problems.

Our learning framework decomposes each preference graph into subgraphs, where the
graph decomposition procedure may take a general form and can change as a function
of the instances. Ranking algorithms, especially in multilabel categorization problems, of-
ten reduce the ranking task into multiple binary decision problems by enumerating over all
pairs of labels [7, 6, 4]. Such a reduction can easily be accommodated within our frame-
work by decomposing the preference graph into elementary subgraphs, each consisting of a
single edge. Another approach is to compare a highly preferred label (such as the correct or
best parse of a sentence) with less preferred labels. Such approaches can be analyzed within
our framework by defining a graph decomposition procedure that generates a subgraph for
each relevant label and the neighboring labels that it is preferred over. Returning to mul-
tilabel settings, this decomposition amounts to a loss that counts the number of relevant
labels which are wrongly ranked below irrelevant ones.

The algorithmic core of this paper is based on boosting-style algorithms for exponential
models [2, 8]. Specifically, the boosting-style updates we employ build upon the construc-
tion used in [2] for solving multiclass problems. Our framework employing graph decom-
position can also be used in other settings such as element ranking via projections [3, 11].
Furthermore, settings in which a semi-metric is defined over the label-set can also be re-
duced to the problem of label ranking, such as the parse ordering case mentioned above or
when the labels are arranged in a hierarchical structure. We employ such a reduction in the
category ranking experiments described in Sec. 4.

The paper is organized as follows: a formal description of our setting is given in Sec. 2. In
Sec. 3 we present an algorithm for learning label ranking functions. We demonstrate the
merits of our approach on the task of category-ranking in Sec. 4 and conclude in Sec. 5.

2 Problem Setting

Let X be an instance domain and let Y be a set of labels, possibly of infinite cardinality. A
label ranking for an instance x ∈ X is a total order over Y , where y � y′ implies that y
is preferred over y′ as a label for x. A label ranking function f : X × Y →

�
induces a

label ranking for x ∈ X by y � y′ ⇐⇒ f(x, y) > f(x, y′). Overloading our notation,
we denote the label ranking induced by f for x by f(x).

We assume that we are provided with a set of base label-ranking functions, h1, . . . , hn,
and aim to learn a linear combination of the form f(x, y) =

∑n

j=1
λjhj(x, y). We are

also provided with a training set S = {(xi,Gi)}
m
i=1 where every example is comprised

of an instance xi ∈ X and a preference graph Gi. As defined in the previous section,
a preference graph is a directed graph G = (V, E), for which the set of vertices V is
defined to be the set of labels Y and E is some finite set of directed edges. Every edge
in a directed graph e ∈ E is associated with an initial vertex, init(e) ∈ V , and a terminal
vertex, term(e) ∈ V . The existence of a directed edge between two labels in a preference
graph indicates that init(e) is preferred over term(e) and should be ranked higher. We
require preference graphs to be simple, namely to have no more than a single edge between
any pair of vertices and to not contain any self-loops. However, we impose no additional
constraints on the supervision, namely, the set of edges in a preference graph may be sparse
and may even include cycles. This form of supervision was chosen for its generality and
flexibility. If Y is very large (possibly infinite), it would be unreasonable to require that the
training data contain a complete total order over Y for every instance.

Informally, our goal is for the label ranking induced by f to be as consistent as possible with
all of the preference graphs given in S. We say that f(xi) disagrees with a preference graph
Gi = (Vi, Ei) if there exists an edge e ∈ Ei for which f

(

xi, init(e)
)

≤ f
(

xi, term(e)
)

.
Formally, we define a function δ that indicates when such a disagreement occurs

δ(f(x),G) =

{

1 if ∃e ∈ E s.t. f
(

x, init(e)
)

≤ f
(

x, term(e)
)

0 otherwise .

A simple measure of empirical ranking accuracy immediately follows from the definition
of δ: We define the 0 − 1 error attained by a ranking function f on a training set S to be
the number of training examples for which f(xi) disagrees with Gi, namely,

ε0−1(f, S) =

m
∑

i=1

δ(f(xi),Gi) .

The 0 − 1 error may be natural for certain ranking problems, however in general it is a
rather crude measure of ranking inaccuracy, as it is invariant to the exact number of edges
in Gi with which f(xi) disagrees. Many ranking problems require a more refined notion of
ranking accuracy. Thus, we define the disagreement error attained by f(xi) with respect
to Gi to be the fraction of edges in Ei with which f(xi) disagrees. The disagreement
error attained on the entire training set is the sum of disagreement errors over all training
examples. Formally, we define the disagreement error attained on S as

εdis(f, S) =

m
∑

i=1

∣

∣

{

e ∈ Ei s.t. f
(

x, init(e)
)

≤ f
(

x, term(e)
)}∣

∣

∣

∣Ei

∣

∣

.

Both the 0−1 error and the disagreement error are reasonable measures of ranking inaccu-
racy. It turns out that both are instances of a more general notion of ranking error of which
additional meaningful instances exist. The definition of this generalized error is slightly
more involved but enables us to present a unified account of different measures of error.

The missing ingredient needed to define the generalized error is a graph decomposition
procedure A that we assume is given together with the training data. A takes as its input

1
2

3

4
5

A1

7−→
1

2

1

4

1

5

2

3 1

3 3

5

5

2

5

4

(

εdis = 3

8

)

1
2

3

4
5

A2

7−→
1

2 4 5

2

3 1

3

5 2 4

5
(

εDom = 2

4

)

1
2

3

4
5

A3

7−→
1

3 1

2

5 2

3

1

4

5 1

5

3
(

εdom = 3

5

)

Figure 2: Applying different graph decomposition procedures induces different error func-
tions: A1 induces εdis, A2 induces εDom and A3 induces εdom. The errors above are with
respect to the order 1 � 2 � 3 � 4 � 5. Dashed edges without arrowheads disagree with
this total order, and the errors are the fraction of subgraphs that contain disagreeing edges.

a preference graph Gi and returns a set of si subgraphs of Gi, denoted {Gi,1, . . . , Gi,si
},

where Gi,k = (Vi, Ei,k). Each subgraph Gi,k is itself a preference graph and therefore
δ(f(xi), Gi,k) is well defined. We now define the generalized error attained by f(xi) with
respect to Gi as the fraction of subgraphs in A(Gi) with which f(xi) disagrees. The
generalized error attained on S is the sum of generalized errors over all training instances.
Formally, the generalized ranking error is defined as

εgen(f, S,A) =
m
∑

i=1

1

si

si
∑

k=1

δ(f(xi), Gi,k) where {Gi,1, . . . , Gi,si
} = A(Gi) . (1)

Previously used losses for label ranking are special cases of the generalized error and are
derived by choosing an appropriate decomposition procedure A. For instance, when A is
defined to be the identity transformation on graphs (A(G) = {G}), then the generalized
ranking error is reduced to the 0 − 1 error. Alternatively, for a graph G with s edges, we
can define A to return s different subgraphs of G, each consisting of a single edge from G

(Fig. 2 top) and the generalized ranking error reduces to the disagreement error.

An additional meaningful measure of error is the domination error. A vertex is said to
dominate the set of neighboring vertices that are connected to its outgoing edges. We
would like every vertex in the preference graph to be ranked above all of its dominated
neighbors. The domination error attained by f(xi) with respect to Gi is the fraction of
vertices with outgoing edges which are not ranked above all of their dominated neighbors.
Formally, let A be the procedure that takes a preference graph G = (V, E) and returns a
subgraph for each vertex with outgoing edges, each such subgraph consisting of a dominat-
ing vertex, its dominated neighbors and edges between them (Fig. 2 middle). Now define
εDom(f, S) = εgen(f, S,A) . Minimizing the domination error is useful for solving multil-
abel classification problems. In these problems Y is of finite cardinality and every instance
xi is associated with a set of correct labels Yi ⊆ Y . In order to reduce this problem to a
ranking problem, we construct preference graphs Gi = (Y , Ei), where Ei contains edges
from every vertex in Yi to every vertex in Y \ Yi. In this case, the domination loss simply
counts the number of labels in Yi that are not ranked above all of the labels in Y \ Yi.

A final interesting measure of error is the dominated error, denoted εdom. The dominated
error is proportional to the number of labels with incoming edges that are not ranked below
all of the labels that dominate them. Its graph decomposition procedure is depicted at the
bottom of Fig. 2. Additional instances of the generalized ranking error exist, and can be
tailored to fit most ranking problems. In the next section we set aside the specifics of the
decomposition procedure and derive a minimization procedure for the generalized error.

INPUT: training data S = {(xi,Gi)}
m
i=1 s.t. xi ∈ X and Gi is a preference graph,

a decomposition procedure A and a set of base ranking functions {h1, . . . , hn}.
INITIALIZE: λ1 = (0, 0, . . . , 0)

πi,e,j = hj

(

xi, term(e)
)

− hj

(

xi, init(e)
)

[1 ≤ i ≤ m, e ∈ Ei, 1 ≤ j ≤ n]

ρ = maxi,e

∑

j |πi,e,j |

ITERATE: For t = 1, 2, . . .

qt,i,e =
∑

k:e∈Ei,k

exp (λt · πi,e)

1 +
∑

e′∈Ei,k
exp (λt · πi,e′)

[1 ≤ i ≤ m, e ∈ Ei]

W+

t,j =
∑

i,e:πi,e,j>0

qt,i,e πi,e,j

si

W−

t,j =
∑

i,e:πi,e,j<0

−qt,i,e πi,e,j

si

[1 ≤ j ≤ n]

Λt,j =
1

2
ln

(

W+

t,j

W−

t,j

)

[1 ≤ j ≤ n]

λt+1 = λt −
Λt

ρ

Figure 3: A boosting based algorithm for generalized label ranking.

3 Minimizing the Generalized Ranking Error

Our goal is to minimize the generalized error for a given training set S and graph decompo-
sition procedureA. This task generalizes standard classification problems which are known
to be NP-complete. Hence we do not attempt to minimize the error directly but rather min-
imize a smooth, strictly convex, upper bound on εgen. The disagreement of f(xi) and a
preference graph Gi,k = (Vi,k , Ei,k) can be upper bounded by

δ(f,xi, Gi,k) ≤ log2



1 +
∑

e∈Ei,k

exp
(

f
(

xi, term(e)
)

− f
(

xi, init(e)
)

)





Denoting the right hand side of the above as L(f(xi), Gi,k), we define the loss attained by
f on the entire training set S to be

L(f, S,A) =

m
∑

i=1

1

si

si
∑

k=1

L(f(xi), Gi,k) where Gi,1, . . . , Gi,si
= A(Gi) .

From the definition of the generalized error in Eq. (1), we conclude the upper bound
εgen(f, S,A) ≤ L(f, S,A) . A boosting-based algorithm that globally minimizes the
loss is given in Fig. 3. On every iteration, a weight qt,i,e is calculated for every edge in
the training data, and the algorithm focuses on satisfying each edge with proportion to its
weight. This set of weights plays the role of the distribution vector common in boosting
algorithms for classification. The following theorem bounds the decrease in loss on every
iteration of the algorithm by a non-negative auxiliary function.

Theorem 1 Let S = {(xi,Gi)}
m
i=1 be a training set such that every xi ∈ X and every

Gi is a preference graph. Let A be a graph decomposition procedure that defines for each
preference graph Gi a set of subgraphs {Gi,1, . . . , Gi,si

} = A(Gi). Denote by ft the
ranking function obtained at iteration t of the algorithm given in Fig. 3 (ft =

∑

j λt,jhj).
Using the notation defined in Fig. 3, the decrease in loss on iteration t is bounded by

L(ft, S,A) −L(ft+1, S,A) ≥
1

ρ

n
∑

j=1

(

√

W+

t,j −
√

W−

t,j

)2

.

Proof Define ∆t,i,k to be the difference between the loss attained by ft and the loss attained
by ft+1 on (xi, Gi,k), that is ∆t,i,k = L(ft(xi), Gi,k) − L(ft+1(xi), Gi,k), and define
φt,i,k =

∑

e∈Ei,k
exp(λt · πi,e). We can now rewrite L(ft(xi), Gi,k) as log

(

1 + φt,i,k

)

.
Using the inequality − log(1 − a) ≥ a (which holds when log(1 − a) is defined), we get

∆t,i,k = log
(

1 + φt,i,k

)

− log
(

1 + φt+1,i,k

)

= − log

(

1 −
φt,i,k − φt+1,i,k

1 + φt,i,k

)

≥
φt,i,k − φt+1,i,k

1 + φt,i,k

=
∑

e∈Ei,k

exp(λt · πi,e) − exp(λt+1 · πi,e)

1 +
∑

e′∈Ei,k
exp(λt · πi,e′)

. (3)

The algorithm sets λt+1 = λt − (1/ρ)Λt and therefore exp(λt+1 · πi,e) in Eq. (3) can be
replaced by exp(λt · πi,e) exp(−(1/ρ)Λt · πi,e), yielding:

∆t,i,k ≥
∑

e∈Ei,k

(

exp(λt · πi,e)

1 +
∑

e′∈Ei,k
exp(λt · πi,e′)

)

(

1 − exp

(

−
1

ρ
Λt · πi,e

))

.

Summing both sides of the above over the subgraphs in A(Gi), and plugging in qt,i,e,

si
∑

k=1

∆t,i,k ≥
∑

e∈Ei





∑

k:e∈Ei,k

exp(λt · πi,e)

1 +
∑

e′∈Ei,k
exp(λt · πi,e′)





(

1 − exp

(

−
1

ρ
Λt · πi,e

))

=
∑

e∈Ei

qt,i,e

(

1 − exp

(

−
1

ρ
Λt · πi,e

))

. (4)

We now rewrite (1/ρ)Λt · πi,e in more convenient form

−
1

ρ
Λt · πi,e = −

n
∑

j=1

1

ρ
Λt,jπi,e,j =

n
∑

j=1

(|πi,e,j |/ρ) (−sign(πi,e,j)Λt,j) . (5)

The rationale behind this rewriting is that we now think of (|πi,e,1|/ρ) , . . . , (|πi,e,n|/ρ) as
coefficients in a subconvex combination of (−sign(πi,e,1)Λt,1) , . . . , (−sign(πi,e,n)Λt,n),
since ∀j (|πi,e,j |/ρ) ≥ 0 and from the definition of ρ,

∑

j (|πi,e,1|/ρ) ≤ 1. Plugging
Eq. (5) into Eq. (4) and using the concavity of the function 1− exp(·) in Eq. (4), we obtain

si
∑

k=1

∆t,i,k ≥
∑

e∈Ei

qt,i,e



1 − exp





n
∑

j=1

(|πi,e,j |/ρ) (−sign(πi,e,j)Λt,j)









≥
∑

e∈Ei,k

n
∑

j=1

qt,i,e(|πi,e,j |/ρ)
(

1 − exp (−sign(πi,e,j)Λt,j)
)

.

Finally, we sum both sides of the above over all of S and plug in W +, W− and Λ to get

L(ft, S,A) −L(ft+1, S,A) =

n
∑

i=1

si
∑

k=1

∆t,i,k

≥
1

ρ

n
∑

j=1

m
∑

i=1

∑

e∈Ei

qt,i,e|πi,e,j |

si

(

1 − exp (−sign(πi,e,j)Λt,j)
)

=
1

ρ

n
∑

j=1



W+

t,j



1 −

√

W−

t,j
√

W+

t,j



 + W−

t,j



1 −

√

W+

t,j
√

W−

t,j









=
1

ρ

n
∑

j=1

(

√

W+

t,j −
√

W−

t,j

)2

.

Thm. 1 proves that the losses attained on each iteration form a monotonically non-
increasing sequence of positive numbers, that must therefore converge. However, we are
interested in proving a stronger claim, namely that the vector sequence (λt)

∞

t=1 converges
to a globally optimal weight-vector λ

?. Since the loss is a convex function, it suffices to
show that the vector sequence converges to a stationary point of the loss. It is easily verified
that the non-negative auxiliary function which bounds the decrease in loss equals zero only
at stationary points of the loss. This fact implies that (λt)

∞

t=1 indeed converges to λ
? if

the set of all feasible values for λ is compact and the loss has a unique global minimum.
Compactness of the feasible set and uniqueness of the optimum can be explicitly enforced
by adding a form of natural regularization to the boosting algorithm. The specifics of this
technique exceed the scope of this paper and are discussed in [5]. In all, the boosting
algorithm of Fig. 3 converges to the globally optimal weight-vector λ

?.

4 Experiments

ε0−1 εdis εDom εdom

0 − 1 0.63 0.068 0.42 0.12
dis 0.73 0.063 0.51 0.14

Dom 0.59 0.049 0.35 0.10
dom 0.59 0.067 0.41 0.10

Figure 4: The test error averaged over 5-
fold cross validation. The rows correspond
to different optimization problems: mini-
mizing ε0−1, εdis, εDom and εdom. Errors
are measured using all 4 error measures.

To demonstrate our framework, we chose to
learn a category ranking problem on a sub-
set of the Reuters Corpus, Vol. 1 [14]. The
full Reuters corpus is comprised of approx-
imately 800, 000 textual news articles, col-
lected over a period of 12 months in 1996–
1997. Most of the articles are labeled by
one or more categories. For the purpose of
these experiments, we limited ourselves to
the subset of articles collected during Jan-
uary 1997: approximately 66, 000 articles
labeled by 103 different categories.

An interesting aspect of the Reuters corpus is that the categories are arranged in a hierar-
chy. The set of possible labels contains both general categories and more specific ones,
where the specific categories refine the general categories. This concept is best explained
with an example: three of the categories in the corpus are Economics, Government Fi-
nance and Government Borrowing. It would certainly be correct to categorize an article on
government borrowing as either government finance or economics, however these general
categories are less specific and do not describe the article as well. Furthermore, misclassi-
fying such an article as government revenue is by far better than misclassifying it as sports.
In summary, the category hierarchy induces a preference over the set of labels. We exploit
this property to generate supervision for the label ranking problem at hand.

Formally, we view every category as a vertex in a rooted tree, where the tree root corre-
sponds to a general abstract category that is relevant to all of the articles in the corpus and
every category is a specific instance of its parent in the tree. The labels associated with an
article constitute a set of paths from the tree root to a set of leaves. The original corpus is
somewhat inconsistent in that not all paths end in a leaf, but rather end in some inner vertex.
To fix this inconsistency, we added a dummy child vertex to every inner vertex and diverted
all paths that originally end in this inner vertex to its new child. Our learning problem then
becomes the problem of ranking leaves. The severity of wrongly categorizing an article
by a leaf is proportional to the graph distance between this leaf and the closest correct leaf
given in the corpus. The preference graph that encodes this preference is a multi-layer
graph where the top layer contains all of the correct labels, the second layer contains all of
their sibling vertices in the tree and so on. Every vertex in the multi-layer preference graph
has outgoing edges to all vertices in lower layers, but there are no edges between vertices
in the same layer. For practical purposes, we conducted experiments using only 3-layer
preference graphs generated by collapsing all of the layers below 3 to a single layer.

All of the experiments were carried out using 5-fold cross validation. The word counts
for each article were used to construct base ranking functions in the following way: for
every word w and every category y, let w(xi) denote the number of appearances of w in
the article xi. Then, define

hw,y(xi, yi) =

{

log(w(xi)) + 1 if w(xi) > 0 and yi = y
0 otherwise . (6)

For each training set, we first applied a heuristic feature selection method common in boost-
ing applications [10] to select some 3200 informative words. These words then define
103 · 3200 base ranking functions as shown in Eq. (6). Next, we ran our learning algorithm
using each of the 4 graph decomposition procedures discussed above: zero-one, disagree-
ment, domination and dominated. After learning each problem, we calculated all four error
measures on the test data. The results are presented in Fig. 4. Two points are worth noting.
First, these results are not comparable with previous results for multilabel problems using
this corpus, since label ranking is a more difficult task. For instance, an average preference
graph in the test data has 820 edges, and the error for such a graph equals zero only if every
single edge agrees with the ranking function. Second, the experiments clearly indicate that
the results obtained by minimizing the domination loss are better than the other ranking
losses, no matter what error is used for evaluation. In particular, employing the domination
loss yields significantly better results than using the disagreement loss which has been the
commonly used decomposition method in categorization problems [7, 10, 6, 4].

5 Summary

We presented a general framework for label ranking problems by means of preference
graphs and the graph decomposition procedure. This framework was shown to generalize
other decision problems, most notably multilabel categorization. We then described and
analyzed a boosting algorithm that works with any choice of graph decomposition. We
are currently exporting the approach to learning in inner product spaces, where different
graph decomposition procedures result in different bindings of slack variables. Another
interesting question is whether the graph decomposition approach can be combined with
probabilistic models for orderings [9] to achieve algorithmic efficiency.

References
[1] M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: Kernels over discrete

structures, and the voted perceptron. In 30th Annual Meeting of the ACL, 2002.
[2] M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman dis-

tances. Machine Learning, 47(2/3):253–285, 2002.
[3] K. Crammer and Y. Singer. Pranking with ranking. NIPS 14, 2001.
[4] K. Crammer and Y. Singer. A new family of online algorithms for category ranking. Jornal of

Machine Learning Research, 3:1025–1058, 2003.
[5] O. Dekel, S. Shalev-Shwartz, and Y. Singer. Smooth epsilon-insensitive regression by loss

symmetrization. COLT 16, 2003.
[6] A. Elisseeff and J. Weston. A kernel method for multi-labeled classification. NIPS 14, 2001.
[7] Y. Freund, R. Iyer, R. E.Schapire, and Y. Singer. An efficient boosting algorithm for combining

preferences. In Machine Learning: Proc. of the Fifteenth International Conference, 1998.
[8] G. Lebanon and J. Lafferty. Boosting and ML for exponential models. NIPS 14, 2001.
[9] G. Lebanon and J. Lafferty. Conditional models on the ranking poset. NIPS 15, 2002.

[10] R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization.
Machine Learning, 32(2/3), 2000.

[11] A. Shashua and A. Levin. Ranking with large margin principle. NIPS 15, 2002.
[12] K. Toutanova and C. D. Manning. Feature selection for a rich HPSG grammar using decision

trees. In Proceedings of the Sixth Conference on Natural Language Learning (CoNLL), 2002.
[13] The Penn Treebank Project. http://www.cis.upenn.edu/∼treebank/.
[14] Reuters Corpus Vol. 1. http://about.reuters.com/researchandstandards/corpus/.

