
Ruby - Feature #11170

[PATCH] use ivar indices for generic ivars

05/23/2015 01:34 AM - normalperson (Eric Wong)

Status: Closed

Priority: Normal

Assignee:

Target version:

Description

[PATCH 1/2] variable.c: extract common functions for generic ivar

http://80x24.org/spew/m/4e9df8a150a121c894fe142bde5efc15d43e5e94.txt

[PATCH 2/2] variable.c: use indices for generic ivars

http://80x24.org/spew/m/aabb09c886a23ea496722b13f2b39da8606b8180.txt

This reduces memory overhead of ivars for common types such as

T_DATA the same way T_OBJECT does it.

For 9992 accepted clients on an OpenSSL server, this reduces RSS memory

from 77160K to 69248K on x86-64 with the attached ossl.rb script.

Connecting client process was reduced from 246312K to 230724K RSS.

OpenSSL 1.0.1e-2+deb7u16 on Debian 7

Associated revisions

Revision 9d9aea7fe50f6340829faa105d9ffe08ebaee658 - 05/29/2015 11:42 PM - Eric Wong

variable.c: use indices for generic ivars

This reduces memory overhead of ivars for common types such as

T_DATA the same way T_OBJECT does it.

For 9992 accepted clients on an OpenSSL server, this reduces

memory from 77160K to 69248K with the script in

https://bugs.ruby-lang.org/issues/11170

variable.c (static int special_generic_ivar): move

(rb_generic_ivar_table): rewrite for compatibility

(gen_ivtbl_bytes): new function

(generic_ivar_get): update to use ivar index

(generic_ivar_update): ditto

(generic_ivar_set): ditto

(generic_ivar_defined): ditto

(generic_ivar_remove): ditto

(rb_mark_generic_ivar): ditto

(givar_i): ditto

(rb_free_generic_ivar): ditto

(rb_mark_generic_ivar_tbl): ditto

(rb_generic_ivar_memsize): ditto

(rb_copy_generic_ivar): ditto

(rb_ivar_set): ditto

(rb_ivar_foreach): ditto

(rb_ivar_count): ditto

(givar_mark_i): remove

(gen_ivtbl_mark): new function

(gen_ivar_each): ditto

(iv_index_tbl_extend): update for struct ivar_update

(iv_index_tbl_newsize): ditto

[ruby-core:69323] [Feature #11170]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@50678 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision 9d9aea7f - 05/29/2015 11:42 PM - Eric Wong

variable.c: use indices for generic ivars

This reduces memory overhead of ivars for common types such as

06/18/2025 1/4

http://80x24.org/spew/m/4e9df8a150a121c894fe142bde5efc15d43e5e94.txt
http://80x24.org/spew/m/aabb09c886a23ea496722b13f2b39da8606b8180.txt
https://bugs.ruby-lang.org/issues/11170

T_DATA the same way T_OBJECT does it.

For 9992 accepted clients on an OpenSSL server, this reduces

memory from 77160K to 69248K with the script in

https://bugs.ruby-lang.org/issues/11170

variable.c (static int special_generic_ivar): move

(rb_generic_ivar_table): rewrite for compatibility

(gen_ivtbl_bytes): new function

(generic_ivar_get): update to use ivar index

(generic_ivar_update): ditto

(generic_ivar_set): ditto

(generic_ivar_defined): ditto

(generic_ivar_remove): ditto

(rb_mark_generic_ivar): ditto

(givar_i): ditto

(rb_free_generic_ivar): ditto

(rb_mark_generic_ivar_tbl): ditto

(rb_generic_ivar_memsize): ditto

(rb_copy_generic_ivar): ditto

(rb_ivar_set): ditto

(rb_ivar_foreach): ditto

(rb_ivar_count): ditto

(givar_mark_i): remove

(gen_ivtbl_mark): new function

(gen_ivar_each): ditto

(iv_index_tbl_extend): update for struct ivar_update

(iv_index_tbl_newsize): ditto

[ruby-core:69323] [Feature #11170]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@50678 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision f6cd582505429fa95a4cf697507d8f39959f48d1 - 05/30/2015 12:20 AM - Eric Wong

variable.c: avoid compatibility table with generic ivars

This recovers and improves performance of Marshal.dump/load on

Time objects compared to when we implemented generic ivars

entirely using st_table.

This also recovers some performance on other generic ivar objects,

but does not bring bring Marshal.dump/load performance up to

previous speeds.

benchmark results:

minimum results in each 10 measurements.

Execution time (sec)

name trunk geniv after

marshal_dump_flo 0.343 0.334 0.335

marshal_dump_load_geniv 0.487 0.527 0.495

marshal_dump_load_time 1.262 1.401 1.257

Speedup ratio: compare with the result of `trunk' (greater is better)

name geniv after

marshal_dump_flo 1.026 1.023

marshal_dump_load_geniv 0.925 0.985

marshal_dump_load_time 0.901 1.004

include/ruby/intern.h (rb_generic_ivar_table): deprecate

internal.h (rb_attr_delete): declare

marshal.c (has_ivars): use rb_ivar_foreach

(w_ivar): ditto

(w_object): update for new interface

time.c (time_mload): use rb_attr_delete

variable.c (generic_ivar_delete): implement

(rb_ivar_delete): ditto

(rb_attr_delete): ditto

[ruby-core:69323] [Feature #11170]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@50680 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision f6cd5825 - 05/30/2015 12:20 AM - Eric Wong

variable.c: avoid compatibility table with generic ivars

06/18/2025 2/4

https://bugs.ruby-lang.org/issues/11170

This recovers and improves performance of Marshal.dump/load on

Time objects compared to when we implemented generic ivars

entirely using st_table.

This also recovers some performance on other generic ivar objects,

but does not bring bring Marshal.dump/load performance up to

previous speeds.

benchmark results:

minimum results in each 10 measurements.

Execution time (sec)

name trunk geniv after

marshal_dump_flo 0.343 0.334 0.335

marshal_dump_load_geniv 0.487 0.527 0.495

marshal_dump_load_time 1.262 1.401 1.257

Speedup ratio: compare with the result of `trunk' (greater is better)

name geniv after

marshal_dump_flo 1.026 1.023

marshal_dump_load_geniv 0.925 0.985

marshal_dump_load_time 0.901 1.004

include/ruby/intern.h (rb_generic_ivar_table): deprecate

internal.h (rb_attr_delete): declare

marshal.c (has_ivars): use rb_ivar_foreach

(w_ivar): ditto

(w_object): update for new interface

time.c (time_mload): use rb_attr_delete

variable.c (generic_ivar_delete): implement

(rb_ivar_delete): ditto

(rb_attr_delete): ditto

[ruby-core:69323] [Feature #11170]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@50680 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

History

#1 - 05/23/2015 01:35 AM - normalperson (Eric Wong)

- File ossl_11170.rb added

Attached standalone test script, increase "ulimit -n" as necessary.

#2 - 05/23/2015 02:19 AM - ko1 (Koichi Sasada)

+1.

T_CLASS/T_MODULE can use same technique, but it seems not so many use-cases.

#3 - 05/29/2015 12:58 AM - normalperson (Eric Wong)

After the original patch, rb_generic_ivar_table() is much more expensive

but kept for compatibility reasons. I propose deprecating it, I'm not

sure if any 3rd party C-exts use it.

http://80x24.org/spew/m/1432859944-14374-1-git-send-email-e@80x24.org.txt

[PATCH 3/2] avoid compatibility table with generic ivars

This recovers and improves performance of Marshal.dump/load on

Time objects compared to when we implemented generic ivars

entirely using st_table.

This also recovers some performance on other generic ivar objects,

but does not bring bring Marshal.dump/load performance up to

previous speeds.

benchmark results:

minimum results in each 10 measurements.

Execution time (sec)

name trunk geniv after

marshal_dump_flo 0.343 0.334 0.335

marshal_dump_load_geniv 0.487 0.527 0.495

marshal_dump_load_time 1.262 1.401 1.257

06/18/2025 3/4

http://80x24.org/spew/m/1432859944-14374-1-git-send-email-e@80x24.org.txt

Speedup ratio: compare with the result of `trunk' (greater is better)

name geniv after

marshal_dump_flo 1.026 1.023

marshal_dump_load_geniv 0.925 0.985

marshal_dump_load_time 0.901 1.004

#4 - 05/29/2015 11:43 PM - Anonymous

- Status changed from Open to Closed

Applied in changeset r50678.

variable.c: use indices for generic ivars

This reduces memory overhead of ivars for common types such as

T_DATA the same way T_OBJECT does it.

For 9992 accepted clients on an OpenSSL server, this reduces

memory from 77160K to 69248K with the script in

https://bugs.ruby-lang.org/issues/11170

variable.c (static int special_generic_ivar): move

(rb_generic_ivar_table): rewrite for compatibility

(gen_ivtbl_bytes): new function

(generic_ivar_get): update to use ivar index

(generic_ivar_update): ditto

(generic_ivar_set): ditto

(generic_ivar_defined): ditto

(generic_ivar_remove): ditto

(rb_mark_generic_ivar): ditto

(givar_i): ditto

(rb_free_generic_ivar): ditto

(rb_mark_generic_ivar_tbl): ditto

(rb_generic_ivar_memsize): ditto

(rb_copy_generic_ivar): ditto

(rb_ivar_set): ditto

(rb_ivar_foreach): ditto

(rb_ivar_count): ditto

(givar_mark_i): remove

(gen_ivtbl_mark): new function

(gen_ivar_each): ditto

(iv_index_tbl_extend): update for struct ivar_update

(iv_index_tbl_newsize): ditto

[ruby-core:69323] [Feature #11170]

Files

ivar-reduce-combined.patch 17.2 KB 05/23/2015 normalperson (Eric Wong)

ossl_11170.rb 1.74 KB 05/23/2015 normalperson (Eric Wong)

Powered by TCPDF (www.tcpdf.org)

06/18/2025 4/4

https://bugs.ruby-lang.org/issues/11170
bugs.ruby-lang.org/issues/11170
https://redmine.ruby-lang.org/issues/11170
http://www.tcpdf.org

