Ruby - Feature #11717

Object#trap -- pass object to block and return result
11/19/2015 08:50 PM - zverok (Victor Shepelev)

Status: Closed
Priority: Normal
Assignee:

Target version:

Description

Objectittrap can be thought as useful counterpart for Object#tap: like tap, it passes object to the block; unlike tap, it returns results of
the block, not object itself.

Rationale

#trap could allow to gracefully chain processing of objects, which isn't Enumerable, therefore enforcing "functional” style in Ruby
(which considered good).

Use case

Assume we grab some resource from web:
SomeWebClient.get ('http://some/url', paraml: 'valuel', param2: 'value2') .body

And now, the body of response is JSON, and we want it parsed. How to express it?

Option 1: wrap:
JSON.parse (SomeWebClient.get ("http://some/url', paraml: 'valuel', param2: 'value2') .body)
Downside: messy parenthesis, and need to jump back and forth to understand the meaning

Option 2: intermediate variable:

s = SomeWebClient.get ('http://some/url', paraml: 'valuel',K param2: 'value2') .body
JSON.parse (s)

Downside: intermediate variable is not elegant

Option 3: monkey-patch (or refine)

SomeWebClient.get ('http://some/url', paraml: 'valuel',K param2: 'value2') .body.from_json

Downside: monkey-patching is a last resort; also, your classes should be already patched when yo
u stuck with this case

Option 4 (proposed): trap
SomeWebClient.get ('http://some/url', paraml: 'valuel', param2: 'value2') .body.
trap{ls| JSON.parse(s)} # => parsed JSON

And when you are thinking with code, experimenting with code (especially in irb, but in editor too), only last option is "natural” river of
thoughts: do this, then do that (extract data from web, then parse it).

Naming
e it is similar enough to tap;

e it is specific enough to not be used widely in some popular library (or isn't it?);
¢ mnemonic is "do something and trap (catch) the value".

WDYT?

Related issues:

Is duplicate of Ruby - Feature #6721: Object#yield_self Closed
Has duplicate Ruby - Feature #12760: Optional block argument for “itself’ Closed
Has duplicate Ruby - Feature #13172: Method that yields object to block and r... Closed
History

#1 - 11/19/2015 10:49 PM - Ox0Odea (D.E. Akers)

You're looking for #instance_eval:

06/15/2025 1/3

'foo'.instance_eval { |obj| obj.size } # => 3

#2 - 11/19/2015 11:02 PM - zverok (Victor Shepelev)
Nope.

I'm aware of #instance_eval last 10 years or so (I even can recall times when #instance_exec were external library method, not part of the core).

Primary goal/usage of #instance_eval is to "dig inside". Primary goal/usage of #trap is to "apply next transormation". Even if #trap will be implemented
as a simple alias of #instance_eval, it will have some usage/popularity outside of #instance_eval's domain. On my opinion only, of course.

#3 - 11/19/2015 11:08 PM - phluid61 (Matthew Kerwin)

Some related issues and historical readings:

e #10095 Object#as
o from #6373 Object#self
#6721 Objecttyield_seld
Object#do
#7388 Object#tembed

e o o
[
(o]
o)
(oe]
~

Clearly this is something the Ruby community wants. Just as clearly, it's something nobody can name.

#4 - 11/19/2015 11:12 PM - phluid61 (Matthew Kerwin)
Victor Shepelev wrote:
Naming
e it is similar enough to tap;
e it is specific enough to not be used widely in some popular library (or isn't it?);

e mnemonic is "do something and trap (catch) the value".

WDYT?

"trap" already means "trap a signal”, it comes from long-standing Unix terminology; see Signal#trap

#5 - 11/19/2015 11:41 PM - 0x0dea (D.E. Akers)

Victor Shepelev wrote:

Even if #trap will be implemented as a simple alias of #instance_eval...

If you did in fact know that you were essentially requesting an alias for #instance_eval, this was a remarkably roundabout way to go about it.

#6 - 11/20/2015 04:18 PM - zverok (Victor Shepelev)

"trap" already means "trap a signal”, it comes from long-standing Unix terminology

Ooops. Completely forgot about this one :(

Clearly this is something the Ruby community wants. Just as clearly, it's something nobody can name.

Yeah, can see it now.
Thinking further, | wonder if just Object#yield could be parsed correctly...

If you did in fact know that you were essentially requesting an alias for #instance_eval, this was a remarkably roundabout way to go about it.

But hey. It is NOT, in fact:

class MyClass
def with_instance_eval (filename)
File.read(filename) .instance_eval{|s| p [s, self]; parse(s)}
end

def with_trap(filename)
File.read(filename) .trap{|s| p [s, self]; parse(s)}

06/15/2025 2/3

https://redmine.ruby-lang.org/issues/10095
https://redmine.ruby-lang.org/issues/6373
https://redmine.ruby-lang.org/issues/6721
https://redmine.ruby-lang.org/issues/6684
https://redmine.ruby-lang.org/issues/7388
http://ruby-doc.org/core-2.2.0/Signal.html#method-c-trap

end

def parse(str)
JSON.parse (str)
end
end

puts "#trap:"
p MyClass.new.with_trap('test.json')

puts "#instance_eval:"
p MyClass.new.with_instance_eval ('test.json')

Output:

#trap:

["{\"test\": 1}\n", #<MyClass:0x911£428>]
{"test"=>1}

#instance_eval:
["{\"test\": 1}\1’1", "{\"test\": 1}\1’1"]
trap.rb:in "block in with_instance_eval': undefined method “parse' for "{\"test\": 1}\n":String (NoMethodError

)

#7 - 11/20/2015 06:06 PM - nobu (Nobuyoshi Nakada)
- Is duplicate of Feature #6721: Object#yield_self added

#8 - 09/20/2016 12:55 AM - nobu (Nobuyoshi Nakada)
- Has duplicate Feature #12760: Optional block argument for “itself’ added

#9 - 01/31/2017 04:16 AM - nobu (Nobuyoshi Nakada)
- Has duplicate Feature #13172: Method that yields object to block and returns result added

#10 - 05/01/2017 07:50 AM - nobu (Nobuyoshi Nakada)
- Status changed from Open to Closed

Applied in changeset trunk|r58528.

object.c: Kernel#yield_self
e object.c (rb_obj_yield_self): new method which yields the

receiver and returns the result.

ruby-core:46320] [Feature #6721]

06/15/2025 3/3

bugs.ruby-lang.org/issues/6721
https://redmine.ruby-lang.org/issues/6721
http://www.tcpdf.org

