Ruby - Bug #13343

Improve Hash#merge performance
03/21/2017 12:49 AM - watson1978 (Shizuo Fujita)

Status: Closed
Priority: Normal
Assignee:

Target version:

ruby -v: Backport:

2.2: UNKNOWN, 2.3: UNKNOWN, 2.4:
UNKNOWN

Description
Hash#merge will be faster around 60%.

Before

user system total real
Hash#merge 0.160000 0.020000 0.180000 (0.182357)
After

user system total real
Hash#merge 0.110000 0.010000 0.120000 (0.114404)
Test code

require 'benchmark'

Benchmark.bmbm do |x|

hashl = {}

100.times { |i| hashl[i.to_s] = i }

hash2 = {}

100.times { |i] hash2[(i*2).to_s] = 1*2 }

x.report "Hashfmerge" do
10000.times do
hashl.merge (hash?2)
end
end
end

Patch

The patch is in https:/github.com/ruby/ruby/pull/1533

Associated revisions

Revision 9cd66d7022aa2b8aff719a26c594efc9c3797ec1 - 05/20/2017 09:23 AM - watson1978 (Shizuo Fujita)

Improve Hash#merge performance
® hash.c (rb_hash_merge): use rb_hash_dup() instead of rb_obj_dup() to duplicate
Hash object. rb_hash_dup() is faster duplicating function for Hash object
which got rid of Hash#initialize_dup method calling.

Hash#merge will be faster around 60%.
[ruby-dev:50026] [Bug #13343] [Fix GH-1533]

Before
user system total real

Hash#merge 0.160000 0.020000 0.180000 (0.182357)

06/17/2025

1/4

https://github.com/ruby/ruby/pull/1533

After

user system total
Hash#merge 0.110000 0.010000 0.120000 (0.114404)
Test code
require 'benchmark'’

Benchmark.bombm do |x|

hash1 = {}

100.times { |i| hash1[i.to_s] =i}
hash2 = {}

100.times { |i| hash2[(i2).to_s] = i2 }

x.report "Hash#merge" do
10000.times do
hash1.merge(hash2)

end

end

end

real

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58811 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

Revision 9cd66d70 - 05/20/2017 09:23 AM - watson1978 (Shizuo Fujita)

Improve Hash#merge performance

¢ hash.c (rb_hash_merge): use rb_hash_dup() instead of rb_obj_dup() to duplicate
Hash object. rb_hash_dup() is faster duplicating function for Hash object

which got rid of Hash#initialize_dup method calling.

Hash#merge will be faster around 60%.
[ruby-dev:50026] [Bug #13343] [Fix GH-1533]

Before
user system total

Hash#merge 0.160000 0.020000 0.180000 (0.182357)

After

user system total
Hash#merge 0.110000 0.010000 0.120000 (0.114404)
Test code
require 'benchmark’

Benchmark.bmbm do |x|

hash1 = {}

100.times { |i| hash1[i.to_s] =i}
hash2 = {}

100.times { |i| hash2[(i2).to_s] =2}

x.report "Hash#merge" do
10000.times do
hash1.merge(hash2)

end

end

end

real

real

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@58811 b2dd03c8-39d4-4d8f-98ff-823fe69b080e

History

#1 - 03/27/2017 05:21 AM - normalperson (Eric Wong)

watson1978@gmail.com wrote:

06/17/2025

2/4

mailto:watson1978@gmail.com

https://bugs.ruby-lang.org/issues/13343

Hash#merge will be faster around 60%.

+Cc ruby-core, since your post was English (and | don't read Japanese)
This is promising!

The patch is in https:/github.com/ruby/ruby/pull/1533

We need to check for redefinition of initialize_dup and
initialize_copy methods in Hash for this to be correct.

Unfortunately for people optimizing Ruby, corner-case
redefinition checks are probably necessary :<

Also, | wonder if we can improve rb_funcall to better support
inline caching. rb_funcall APl is also bad since it cannot use
inline cache for method lookup. Maybe a better C APl can be
introduced for faster function calls from C.

Note: | checked commit c5d74afdb4cfea2a4c9ff432d9da82f0649a1e67
by having a "fetch = +refs/pull/:refs/remotes/ruby/pull/"

line in a "remote" section of my .git/config. | did not

use any proprietary APl or JavaScript to view your changes.

#2 - 03/27/2017 05:21 AM - normalperson (Eric Wong)

watson1978@gmail.com wrote:

https://bugs.ruby-lang.org/issues/13343

Hash#merge will be faster around 60%.

+Cc ruby-core, since your post was English (and | don't read Japanese)
This is promising!

The patch is in https://github.com/ruby/ruby/pull/1533

We need to check for redefinition of initialize_dup and
initialize_copy methods in Hash for this to be correct.

Unfortunately for people optimizing Ruby, corner-case
redefinition checks are probably necessary :<

Also, | wonder if we can improve rb_funcall to better support
inline caching. rb_funcall APl is also bad since it cannot use
inline cache for method lookup. Maybe a better C APl can be
introduced for faster function calls from C.

Note: | checked commit c5d74afdb4cfea2a4c9ff432d9da82f0649a1e67
by having a "fetch = +refs/pull/:refs/remotes/ruby/pull/"

line in a "remote" section of my .git/config. | did not

use any proprietary APl or JavaScript to view your changes.

#3 - 03/27/2017 05:52 AM - watson1978 (Shizuo Fuijita)
| followed the behavior of Array's methods such as

VALUE
rb_ary_sort (VALUE ary)
{
ary = rb_ary_dup (ary);

It does not check whether initialize_dup/initialize_copy were overridden.

#4 - 05/20/2017 09:23 AM - watson1978 (Shizuo Fuijita)
- Status changed from Open to Closed

06/17/2025

3/4

https://bugs.ruby-lang.org/issues/13343
https://github.com/ruby/ruby/pull/1533
mailto:watson1978@gmail.com
https://bugs.ruby-lang.org/issues/13343
https://github.com/ruby/ruby/pull/1533

Applied in changeset trunk|r58811.

Improve Hash#merge performance

e hash.c (rb_hash_merge): use rb_hash_dup() instead of rb_obj_dup() to duplicate
Hash object. rb_hash_dup() is faster duplicating function for Hash object

which got rid of Hash#initialize_dup method calling.

Hash#merge will be faster around 60%.
[ruby-dev:50026] [Bug #13343] [Fix GH-1533]

Before
user system total

Hash#merge 0.160000 0.020000 0.180000 (0.182357)

After

user system total

Hash#merge 0.110000 0.010000 0.120000 (0.114404)

Test code
require 'benchmark’

Benchmark.bmbm do |x|

hash1 = {}

100.times { |i| hash1[i.to_s] =i}
hash2 = {}

100.times { |i| hash2[(i2).to_s] =2}

x.report "Hash#merge" do
10000.times do
hash1.merge(hash2)

end

end

end

06/17/2025

real

real

/4

bugs.ruby-lang.org/issues/13343
https://redmine.ruby-lang.org/issues/13343
http://www.tcpdf.org

