Ruby - Bug #13754

bigdecimal with lower precision that Float
07/19/2017 09:50 AM - lionel_perrin (Lionel PERRIN)

Status: Third Party's Issue
Priority: Normal
Assignee: mrkn (Kenta Murata)

Target version:

ruby -v: ruby 2.4.1p111 (2017-03-22 revision Backport: 2.2: UNKNOWN, 2.3: UNKNOWN, 2.4:
58053) [x64-mingw32] UNKNOWN

Description

Hello,

I'm not sure if I've misunderstood the bigdecimal class but in the following example, | only get 12 significant digits using bigdecimal
while using Float, | get a correct value with 17 significant digits.

using floats
101/0.9163472602589686 # 110.22022368622177 (OK: floating point computation)

using bigdecimal

a = BigDecimal('101'); a.precs # [9, 18]

b = BigDecimal ('0.9163472602589686"'); b.precs # [18, 27]

c = a/b; c.precs

[18, 36] (OK: I understand that c is computed with 18 significant digits)
c.to_s # "0.110220223686e3" (Mmm: I see only 12 significant digits)

c - BigDecimal('0.110220223686e3")
0.0 (Looks like c only stores 12 significant digits and not 18)

Using the Rational class, I've seen that the value I'm expecting is about:

BigDecimal.new (Rational (101/Rational ('0.9163472602589686")), 25) # 0.1102202236862217746799312e3

Related issues:
Related to Ruby - Bug #8826: BigDecimal#div and #quo different behavior and i... Third Party's Issue

Associated revisions

Revision 1265c819870c6a4d6763529e9fbd2d70c722fe0 - 12/23/2021 05:28 PM - Kenta Murata

[ruby/bigdecimal] Use larger precision in divide for irrational or recurring results

Just in case for irrational or recurring results, the precision of the
quotient is set to at least more than 2*Float::DIG plus alpha.

[Bug #13754] [Fix GH-94]

https://github.com/ruby/bigdecimal/commit/99442¢75d3

Revision €1265¢819870c6a4d6763529e9fbd2d70c722fe0 - 12/23/2021 05:28 PM - Kenta Murata

[ruby/bigdecimal] Use larger precision in divide for irrational or recurring results

Just in case for irrational or recurring results, the precision of the
quotient is set to at least more than 2*Float::DIG plus alpha.

[Bug #13754] [Fix GH-94]

https://github.com/ruby/bigdecimal/commit/99442c75d3

Revision e1265¢81 - 12/23/2021 05:28 PM - Kenta Murata

[ruby/bigdecimal] Use larger precision in divide for irrational or recurring results

Just in case for irrational or recurring results, the precision of the
quotient is set to at least more than 2*Float::DIG plus alpha.

06/14/2025 12

https://github.com/ruby/bigdecimal/commit/99442c75d3
https://github.com/ruby/bigdecimal/commit/99442c75d3

[Bug #13754] [Fix GH-94]

https://github.com/ruby/bigdecimal/commit/99442c75d3

History

#1 - 07/19/2017 09:55 AM - lionel_perrin (Lionel PERRIN)

- Description updated

#2 - 07/19/2017 10:12 AM - lionel_perrin (Lionel PERRIN)

- Description updated

#3 - 07/19/2017 10:12 AM - lionel_perrin (Lionel PERRIN)

- Description updated

#4 - 07/19/2017 10:13 AM - lionel_perrin (Lionel PERRIN)

- Description updated

#5 - 08/30/2017 08:54 AM - mrkn (Kenta Murata)
- Status changed from Open to Assigned

- Assignee set to mrkn (Kenta Murata)

#6 - 12/23/2017 11:20 PM - mrkn (Kenta Murata)

- Target version set to 2.6

https://github.com/ruby/bigdecimal/issues/94

#7 - 12/25/2017 06:15 PM - naruse (Yui NARUSE)
- Target version deleted (2.6)

#8 - 05/20/2018 09:16 PM - karatedog (Foldes Laszlo)

That is the same problem as here: https:/bugs.ruby-lang.org/issues/8826
#/ is the same method as #quo (according to documentation both methods are defined in 'bigdecimal.c' at line 1281). Currently you can divide a
bigdecimal by using #/, #quo and #div but | don't really understand the design behind these methods (on a "which should do what" level).

#div accepts a precision argument, while #quo does not. Without precision argument #div returns Fixnum even if its first argument is a Float, it even
returns Fixnum if both divisor and dividend are Float..

Thus far | don't know any method that could be able to calculate a division AND set the proper precision on the result. What you can do is to manually
set precision by using #div. If you set the precision to the same amount as the divisor, you will not miss any significant digits, the drawback is that you
will see a lot of digit repetition for most of the numbers.

(1019 is a long prime, its reciprocal has 1018 significant digits)

> BigDecimal (1) .div(1019,1019) .to_s

#9 - 09/11/2020 06:39 PM - jeremyevans0 (Jeremy Evans)
- Related to Bug #8826: BigDecimal#div and #quo different behavior and inconsistencies added

#10 - 12/20/2021 12:35 PM - mrkn (Kenta Murata)
- Status changed from Assigned to Third Party's Issue

This was fixed at https:/github.com/ruby/bigdecimal/issues/94.

06/14/2025 22

https://github.com/ruby/bigdecimal/commit/99442c75d3
https://github.com/ruby/bigdecimal/issues/94
https://bugs.ruby-lang.org/issues/8826
https://github.com/ruby/bigdecimal/issues/94
http://www.tcpdf.org

