
Ruby - Feature #14799

Startless range

05/31/2018 07:56 AM - zverok (Victor Shepelev)

Status: Closed

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)

Target version:

Description

On introduction of endless range at #12912, "startless range" was discussed this way:

@sowieso: Not having the opposite (..5 and ..-2) feels like this is rather a hack than a thoroughly planned feature.

 @duerst (Martin Dürst): I don't understand the need for a ..5 Range. The feature is called "endless range". Although

mathematically, it's possible to think about startless ranges, they don't work in a program. Maybe some programming languages

have ..5 as a shortcut for 0..5, but that's in any way a usual, bounded, range with a start and an end. It's conceptually totally

different from 5.., which is a range with a start but no end, an unbound range.

 In the context of that ticket (ranges used mostly for slicing arrays) having ..5 was indeed hard to justify, but there are other cases

when ..5 being -Infinity..5 is absolutely reasonable:

case release_date

when ..1.year.ago

 puts "ancient"

when 1.year.ago..3.months.ago

 puts "old"

when 3.months.ago..Date.today

 puts "recent"

when Date.today..

 puts "upcoming"

end

log.map(&:logged_at).grep(..Date.new(1980)) # => outliers due to bad log parsing...

 E.g., whenever case equality operator is acting, having startless range to express "below this value" is the most concise and

readable way. Also, for expressing constants (mostly decorative, but very readable):

Celsius degrees

WORK_RANGES = {

 ..-10 => :turn_off,

 -10..0 => :energy_saving,

 0..20 => :main,

 20..35 => :cooling,

 35.. => :turn_off

}

 In addition, my related proposal #14784 suggests that this kind of ranges could be utilized by more powerful clamp too:

updated_at.clamp(..Date.today)

 Uncertainty points:

Would it be hard to add to parser? I am not sure, I am not very good at it :(

Should .. be a thing? I guess not, unless there would be convincing real-life examples, which for me it is hard to think of.

Related issues:

Related to Ruby - Bug #15745: There is no symmetry in the beginless range and... Closed

History

#1 - 05/31/2018 08:10 AM - shyouhei (Shyouhei Urabe)

06/17/2025 1/4

https://redmine.ruby-lang.org/issues/12912
https://redmine.ruby-lang.org/users/50
https://redmine.ruby-lang.org/issues/14784

No strong opinion on this. However let me leave one question: how should Range#each work for this kind of ranges?

#2 - 05/31/2018 09:14 AM - zverok (Victor Shepelev)

how should Range#each work for this kind of ranges?

 Most probably it should not (the same as Enumerable#reverse_each or last(5) doesn't have a sense for already implemented endless ranges), just

raise.

#3 - 05/31/2018 09:31 AM - shyouhei (Shyouhei Urabe)

zverok (Victor Shepelev) wrote:

how should Range#each work for this kind of ranges?

 Most probably it should not (the same as Enumerable#reverse_each or last(5) doesn't have a sense for already implemented endless ranges),

just raise.

 Sounds reasonable, except it seems endless range does not raise for #reverse_each :)

zsh % ruby -ve '(1..).reverse_each {|i| p i }'

ruby 2.6.0dev (2018-05-29 trunk 63514) [x86_64-darwin15]

^CTraceback (most recent call last):

 2: from -e:1:in `<main>'

 1: from -e:1:in `reverse_each'

-e:1:in `each': Interrupt

#4 - 05/31/2018 09:51 AM - zverok (Victor Shepelev)

except it seems endless range does not raise for #reverse_each :)

 Funny!

Though, in fact, raises some big questions about Enumerable implementations. As far as I can understand, most of Enumerable's methods aren't

redefined in Range, which leaves a room for optimization (and sometimes a huge room): last(N) and reverse_each are just work by converting

enumerable to an Array, and then taking the last elements. Probably, providing custom #reverse_each for where it is acceptable, and making #last

rely on this could be both more effective, and produce more reasonable result in edge cases (like open -- semi-infinite -- sequences).

#5 - 05/31/2018 11:39 AM - mame (Yusuke Endoh)

- File beginless-range.patch added

- Status changed from Open to Assigned

- Assignee set to matz (Yukihiro Matsumoto)

I tried begin-less range once, and it caused many parser conflicts, so I gave up.

However, I've tried it again and created a patch with no conflicts.

A proof-of-concept patch is attached. It uses the damn lexer state, so I'd like nobu and yui-knk to review it.

Note that the main focus of this patch is parse.y, so we need more work to let many builtin methods to support begin-less range.

Matz, what do you think?

#6 - 05/31/2018 01:01 PM - janosch-x (Janosch Müller)

Rails devs could also make use of this, e.g. in queries.

#7 - 06/04/2018 11:10 AM - DarkWiiPlayer (Dennis Fischer)

This does make sense when considering the reverse of the range, in other words, counting down from N to -infinity. This reasoning has two problems

though:

Ranges have no method that reverse them

Ruby doesn't seem to like N..M ranges where M < N ((5..1).each {|x| puts x} simply prints 5..1 in ruby 2.5

Intuitively, counting down like that seems like a pretty common use case, but I cannot actually recall ever needing it, and it could also be simulated

with a forward-counting range and just multiplying the values with -1 before using them, which shouldn't really have any considerable impact on

06/17/2025 2/4

http://guides.rubyonrails.org/active_record_querying.html#range-conditions

speed.

EDIT: Overriding #each to raise an exception and only allowing #reverse_each with startless ranges might make them somewhat useful.

#8 - 06/14/2018 02:34 PM - znz (Kazuhiro NISHIYAMA)

I think version guard of ruby/spec is one of usages.

For example:

ruby_version_is ""..."2.6" do

 # ...

end

#9 - 06/14/2018 03:16 PM - Eregon (Benoit Daloze)

znz (Kazuhiro NISHIYAMA) wrote:

I think version guard of ruby/spec is one of usages.

For example:

ruby_version_is ""..."2.6" do

 # ...

end

Right, this would be a nice way to express version ranges like

ruby_version_is ..."2.6" do

 # ...

end

ruby_version_is "2.4"... do

 # ...

end

 However for the case of ruby/spec, we'll have to wait until 2.5 is out of life to actually use those, as the syntax does not work on 2.5 and earlier.

#10 - 06/14/2018 10:30 PM - mame (Yusuke Endoh)

I agree that it is a good use case.

But notice that we will not be able to write ruby_version_is ..."2.6" do because it parses as (ruby_version_is..."2.6") do.

We need to write parentheses: ruby_version_is(..."2.6") do.

#11 - 06/15/2018 05:14 PM - Eregon (Benoit Daloze)

@mame (Yusuke Endoh) Ah, that is quite unfortunate (it does not look so nice with the parens), but thank you for mentioning the caveat.

I guess much like Range literals in general, it's often needed to have parens around them.

#12 - 06/21/2018 09:02 AM - knu (Akinori MUSHA)

Let me point out that with this patch applied, (nil..nil).cover?(1) would become returning true rather than raising an error. Note that nil..nil has been

valid for all past versions of ruby.

#13 - 03/11/2019 05:15 AM - matz (Yukihiro Matsumoto)

I have some concerns, especially ones with syntax rules. Let us try it in the trunk, and see if it works well or not.

Matz.

#14 - 03/11/2019 05:29 AM - nobu (Nobuyoshi Nakada)

BDOT2 and BDOT3 don't seem necessary.

#15 - 04/03/2019 08:16 AM - mame (Yusuke Endoh)

- Status changed from Assigned to Closed

Committed at r67422. Please give it a try and let me know if you find any issue.

#16 - 04/20/2019 11:37 AM - naruse (Yui NARUSE)

- Related to Bug #15745: There is no symmetry in the beginless range and the endless range using `Range#inspect` added

06/17/2025 3/4

https://redmine.ruby-lang.org/users/18

Files

beginless-range.patch 3.55 KB 05/31/2018 mame (Yusuke Endoh)

Powered by TCPDF (www.tcpdf.org)

06/17/2025 4/4

http://www.tcpdf.org

