Ruby - Bug #17678

Ractors do not restart after fork
03/08/2021 04:19 PM - ivoanjo (lvo Anjo)

Status: Closed
Priority: Normal
Assignee: ractor

Target version:

ruby -v: Backport:

3.0: UNKNOWN, 3.1: UNKNOWN, 3.2:
UNKNOWN

Description

Hello there! I'm working at Datadog on the ddtrace gem -- https://github.com/DataDog/dd-trace-rb and we're experimenting with using

Ractors in our library but run into a few issues.

Background

When running a Ractor as a background process, the Ractor stops & does not restart when the application forks.

How to reproduce (Ruby version & script)
ruby 3.0.0p0 (2020-12-25 revision 95aff21468) [x86_64-linux]

r2 = Ractor.new do
loop { puts "[#{Process.pid}] Ractor"; sleep(l) }
end

sleep (1)
puts "[#{Process.pid}] Forking..."

fork do

sleep (5)

puts "[#{Process.pid}] End fork."
end

loop do

sleep (1)
end

Expectation and result

The application prints “Ractor” each second in the main process, but not in the fork.

Expected the Ractor (defined as r2) to run in the fork.

[29] Ractor
[29] Ractor
[29] Forking...
[29] Ractor
[29] Ractor
[29] Ractor
[29] Ractor
[29] Ractor
[32] End fork.
[29] Ractor
[29] Ractor
[29] Ractor

Additional notes

Threads do not restart across forks either, so it might not be unreasonable to expect consistent behavior. However, it’s possible to
detect a dead Thread and recreate it after a fork (e.g. with #alive?, #status), but there’s no such mechanism for Ractors.

06/17/2025

1/3

https://github.com/DataDog/dd-trace-rb

Suggested solutions

1. Auto-restart Ractors after fork
2. Add additional methods to Ractors that allow users to check & manage the status of the Ractor, similar to Thread.

History

#1 - 03/08/2021 04:21 PM - ivoanjo (lvo Anjo)
- ruby -v set to ruby 3.0.0p0 (2020-12-25 revision 95aff21468) [x86_64-linux]

#2 - 03/09/2021 12:42 AM - hsbt (Hiroshi SHIBATA)
- Status changed from Open to Assigned

- Assignee set to ko1 (Koichi Sasada)

#3 - 03/09/2021 12:42 AM - hsbt (Hiroshi SHIBATA)

- Tags set to ractor

#4 - 08/24/2023 09:12 PM - jeremyevans0 (Jeremy Evans)

- Tracker changed from Bug to Feature

- ruby -v deleted (ruby 3.0.0p0 (2020-12-25 revision 95aff21468) [x86_64-linux])

- Backport deleted (2.5: UNKNOWN, 2.6: UNKNOWN, 2.7: UNKNOWN, 3.0: UNKNOWN)

As Ractors always use separate OS threads, and fork only runs the current thread in the forked process, | don't see a way for Ractors to continue
where they left off after fork. | think auto-starting would likely be a bad idea, because auto-starting would not return them to the state they were at
fork.

The addition of Ractor#alive? and/or Ractor#status makes sense to me. Even in non-forked processes such methods could be useful. Note that you
can get what you want already, by calling Ractor#inspect, so these methods would only need to expose information that Ractor is already storing.

#5 - 08/25/2023 08:12 AM - ivoanjo (Ilvo Anjo)

The addition of Ractor#alive? and/or Ractor#status makes sense to me. Even in non-forked processes such methods could be useful. Note that
you can get what you want already, by calling Ractor#inspect, so these methods would only need to expose information that Ractor is already

storing.
Thanks for looking into this!
I don't think the info is there in #inspect... At least | don't get it on stable or latest ruby-head? [l
Here's an updated example:

puts RUBY_DESCRIPTION

r2 = Ractor.new { puts "[#{Process.pid}] Ractor started!"; sleep(1000) }
puts "[#{Process.pid}] In parent process, ractor status is #{r2.inspect}"
sleep (1)

puts "[#{Process.pid}] Forking..."

fork do

puts "[#{Process.pid}] In child process, ractor status is #{r2.inspect}"
end

Process.wait
and here's what | get:

$ ruby ractor-test.rb

ruby 3.3.0dev (2023-08-24T12:12:51Z master 5eclfc52cl) [x86_64-1inux]

ractor-test.rb:3: warning: Ractor is experimental, and the behavior may change in future versions of Ruby! Als
o there are many implementation issues.

[10] In parent process, ractor status is #<Ractor:#2 ractor-test.rb:3 blocking>

[10] Ractor started!

[10] Forking...

06/17/2025 2/3

[12] In child process, ractor status is #<Ractor:#2 ractor-test.rb:3 blocking>

#6 - 08/25/2023 02:35 PM - jeremyevans0 (Jeremy Evans)
- Tracker changed from Feature to Bug

- Backport set to 3.0: UNKNOWN, 3.1: UNKNOWN, 3.2: UNKNOWN

Thanks for that information. It looks like ractors contain information about their state (shown in inspect), but that state is not updated on fork, unlike
threads. So | think there is a bug, and it's that non-main ractors do not have their state to terminated upon fork (forking from non-main ractors is going
to be prohibited, see #17516).

#7 - 08/25/2023 03:29 PM - ivoanjo (lvo Anjo)

Ack, that seems a reasonable way of looking at this, having a way to detect that the ractor is dead would be enough to write some auto-restart code
after fork (Erlang supervisor trees here we go :D).

#8 - 08/25/2023 04:29 PM - jeremyevans0 (Jeremy Evans)

| updated https:/github.com/ruby/ruby/pull/8283 to mark non-main ractors as terminated after fork.

#9 - 05/08/2025 10:38 PM - jhawthorn (John Hawthorn)

- Assignee changed from ko1 (Koichi Sasada) to ractor

#10 - 05/08/2025 10:43 PM - jhawthorn (John Hawthorn)

- Status changed from Assigned to Closed

Sorry @jeremyevans0 (Jeremy Evans) | think Aaron and | missed that PR, but we did the same thing in https:/github.com/ruby/ruby/pull/12982 which
should fix this.

One thing we didn't do that's in your PR is forbid forking from within a Ractor, but that does seem like a prudent restriction (though it could be limiting
for those wanting to fork, make some adjustments, exec)

06/17/2025 3/3

https://redmine.ruby-lang.org/issues/17516
https://github.com/ruby/ruby/pull/8283
https://redmine.ruby-lang.org/users/1604
https://github.com/ruby/ruby/pull/12982
http://www.tcpdf.org

