
Ruby - Bug #18929

ruby master looks slower than 3.1 on a micro benchmark of short-lived objects

07/20/2022 08:21 AM - mame (Yusuke Endoh)

Status: Closed

Priority: Normal

Assignee: peterzhu2118 (Peter Zhu)

Target version:

ruby -v: Backport: 2.7: UNKNOWN, 3.0: UNKNOWN, 3.1:

UNKNOWN

Description

$ time ruby -ve '10000000.times { Object.new }'

ruby 3.1.2p20 (2022-04-12 revision 4491bb740a) [x86_64-linux]

real 0m2.503s

user 0m2.484s

sys 0m0.016s

$ time ./local/bin/ruby -ve '10000000.times { Object.new }'

ruby 3.2.0dev (2022-07-20T00:40:59Z master e330dceb3f) [x86_64-linux]

real 0m3.074s

user 0m3.016s

sys 0m0.052s

 I plotted a graph for daily commits in this year:

We can see a clear slowdown before and after 2022-05-09. As far as I checked each commit on the day,

https://github.com/ruby/ruby/commit/85479b34f76d5b426c2a8224d8ed6d8c2ad81ca2 seems a trigger, but reverting this commit did

not change the performance.

It's just a microbenchmark, but I think there may be room for improvement. @peterzhu2118 (Peter Zhu) Could you check it out?

Associated revisions

Revision cdbb9b8555b4ddcc4c557f25ad785cae6209478d - 07/21/2022 02:46 PM - peterzhu2118 (Peter Zhu)

[Bug #18929] Fix heap creation thrashing in GC

Before this commit, if we don't have enough slots after sweeping but

had pages on the tomb heap, then the GC would frequently allocate and

deallocate pages. This is because after sweeping it would set

allocatable pages (since there were not enough slots) but free the

06/17/2025 1/3

https://github.com/ruby/ruby/commit/85479b34f76d5b426c2a8224d8ed6d8c2ad81ca2
https://redmine.ruby-lang.org/users/42491

pages on the tomb heap.

This commit reuses pages on the tomb heap if there's not enough slots

after sweeping.

Revision cdbb9b8555b4ddcc4c557f25ad785cae6209478d - 07/21/2022 02:46 PM - peterzhu2118 (Peter Zhu)

[Bug #18929] Fix heap creation thrashing in GC

Before this commit, if we don't have enough slots after sweeping but

had pages on the tomb heap, then the GC would frequently allocate and

deallocate pages. This is because after sweeping it would set

allocatable pages (since there were not enough slots) but free the

pages on the tomb heap.

This commit reuses pages on the tomb heap if there's not enough slots

after sweeping.

Revision cdbb9b85 - 07/21/2022 02:46 PM - peterzhu2118 (Peter Zhu)

[Bug #18929] Fix heap creation thrashing in GC

Before this commit, if we don't have enough slots after sweeping but

had pages on the tomb heap, then the GC would frequently allocate and

deallocate pages. This is because after sweeping it would set

allocatable pages (since there were not enough slots) but free the

pages on the tomb heap.

This commit reuses pages on the tomb heap if there's not enough slots

after sweeping.

Revision 0264424d58e0eb3ff6fc42b7b4164b6e3b8ea8ca - 08/15/2022 02:00 PM - peterzhu2118 (Peter Zhu)

Add test for GC thrashing of young object creation

This test will prevent performance regressions like [Bug #18929].

Revision 0264424d58e0eb3ff6fc42b7b4164b6e3b8ea8ca - 08/15/2022 02:00 PM - peterzhu2118 (Peter Zhu)

Add test for GC thrashing of young object creation

This test will prevent performance regressions like [Bug #18929].

Revision 0264424d - 08/15/2022 02:00 PM - peterzhu2118 (Peter Zhu)

Add test for GC thrashing of young object creation

This test will prevent performance regressions like [Bug #18929].

History

#1 - 07/20/2022 05:44 PM - peterzhu2118 (Peter Zhu)

Thanks for bug report and benchmarking the performance over time! I found a bug that causes thrashing in heap page allocation:

https://github.com/ruby/ruby/pull/6156.

Before this patch:

ruby 3.2.0dev (2022-07-20T16:32:04Z pz-bug-18929 b25ee69e38) [arm64-darwin21]

ruby -ve '50000000.times { Object.new }' 4.34s user 0.13s system 99% cpu 4.517 total

 After this patch:

ruby 3.2.0dev (2022-07-20T12:40:31Z pz-bug-18929 86d061294d) [arm64-darwin21]

ruby -ve '50000000.times { Object.new }' 3.48s user 0.05s system 99% cpu 3.547 total

 Ruby 3.1:

ruby 3.1.2p20 (2022-04-12 revision 4491bb740a) [arm64-darwin21]

ruby -ve '50000000.times { Object.new }' 3.43s user 0.06s system 99% cpu 3.489 total

#2 - 07/21/2022 02:07 AM - mame (Yusuke Endoh)

Thank you for the quick fix! Your patch seems to make sense to me.

06/17/2025 2/3

https://github.com/ruby/ruby/pull/6156

#3 - 07/21/2022 02:46 PM - peterzhu2118 (Peter Zhu)

- Status changed from Open to Closed

Applied in changeset git|cdbb9b8555b4ddcc4c557f25ad785cae6209478d.

[Bug #18929] Fix heap creation thrashing in GC

Before this commit, if we don't have enough slots after sweeping but

had pages on the tomb heap, then the GC would frequently allocate and

deallocate pages. This is because after sweeping it would set

allocatable pages (since there were not enough slots) but free the

pages on the tomb heap.

This commit reuses pages on the tomb heap if there's not enough slots

after sweeping.

Files

clipboard-202207201713-zs81l.png 18.2 KB 07/20/2022 mame (Yusuke Endoh)

Powered by TCPDF (www.tcpdf.org)

06/17/2025 3/3

https://redmine.ruby-lang.org/projects/ruby-master/repository/git/revisions/cdbb9b8555b4ddcc4c557f25ad785cae6209478d
https://redmine.ruby-lang.org/issues/18929
http://www.tcpdf.org

