
Ruby - Bug #21391

Inconsistent trailing slash behavior of File.join and Pathname#join with empty strings

06/01/2025 09:42 AM - lovro-bikic (Lovro Bikić)

Status: Open

Priority: Normal

Assignee:

Target version:

ruby -v: ruby 3.4.4 (2025-05-14 revision

a38531fd3f) +PRISM [x86_64-darwin23]

Backport: 3.2: UNKNOWN, 3.3: UNKNOWN, 3.4:

UNKNOWN

Description

File.join('/usr', '')

=> "/usr/"

Pathname.new('/usr').join('').to_s

=> "/usr" # no trailing slash

File.join('/usr', ' ')

=> "/usr/ "

Pathname.new('/usr').join(' ').to_s

=> "/usr/ "

 File.join with an empty string adds a trailing slash, Pathname#join doesn't.

When Pathname#join argument is a string with empty whitespace, a trailing slash is added (plus whitespace).

I think it's a common use-case to append a trailing slash to Pathname, and currently you have to resort to other methods such as

string interpolation (e.g. in Rails, "#{Rails.root}/") or File.join (e.g. File.join(Rails.root, '')).

In other popular languages, both approaches have been taken:

os.path.join in Python adds a trailing slash:

import os

os.path.join('/usr', '')

'/usr/'

Path.join in Rust adds a trailing slash:

use std::path::{Path};

fn main() {

 println!("{}", Path::new("/usr").join("").display());

 // prints "/usr/"

}

path.join in Node doesn't add a trailing slash:

const path = require('path');

path.join('/usr', '');

// '/usr'

filepath.Join in Go doesn't add a trailing slash:

package main

import ("fmt"; "path/filepath")

func main() {

 fmt.Println(filepath.Join("/usr", ""))

 // prints "/usr"

06/13/2025 1/3

https://docs.python.org/3.12/library/os.path.html#os.path.join
https://doc.rust-lang.org/std/path/struct.Path.html#method.join
https://nodejs.org/api/path.html#pathjoinpaths
https://pkg.go.dev/path/filepath#Join

}

History

#1 - 06/01/2025 11:09 AM - lovro-bikic (Lovro Bikić)

- Subject changed from Inconsistent trailing slash behavior of File#join and Pathname#join with empty strings to Inconsistent trailing slash behavior of

File.join and Pathname#join with empty strings

#2 - 06/01/2025 01:02 PM - Dan0042 (Daniel DeLorme)

It's not the only inconsistent behavior:

File.join("/usr","/var") #=> "/usr/var"

Pathname.new("/usr").join("/var").to_s #=> "/var"

File.join("/usr","../var") #=> "/usr/../var"

Pathname.new("/usr").join("../var").to_s #=> "/var"

File.join("/usr","/../var") #=> "/usr/../var"

Pathname.new("/usr").join("/../var").to_s #=> "/../var"

 File.join simply joins two strings together with a separator, whereas Pathname#join is a logical operation on two paths. It's normal for there to be

differences.

That being said, I feel that Pathname.new('/usr').join('') is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or raise

an error.

#3 - 06/01/2025 02:03 PM - lovro-bikic (Lovro Bikić)

Dan0042 (Daniel DeLorme) wrote in #note-2:

It's not the only inconsistent behavior: (absolute and relative paths example)

 To clarify, I don't expect the result of the two to be equivalent in all cases, it's clearly documented what each method does.

What I am reporting is that there's undocumented and possibly inconsistent behavior when it comes to empty strings. Furthermore, the example with

a whitespace string shows that Pathname#join is capable of adding trailing slashes under certain conditions.

File.join behavior has been tested for empty strings, but Pathname#join hasn't, so it's unclear if this is a bug or an expected difference in behavior.

Dan0042 (Daniel DeLorme) wrote in #note-2:

That being said, I feel that Pathname.new('/usr').join('') is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or

raise an error.

 Perhaps, but it's already a common pattern with File.join. Whether it's a nonsensical operation is up for debate, but I think there should be a clear way

for Pathname#join to allow appending trailing slashes to pathnames.

#4 - 06/02/2025 03:26 PM - Dan0042 (Daniel DeLorme)

Dan0042 (Daniel DeLorme) wrote in #note-2:

That being said, I feel that Pathname.new('/usr').join('') is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or

raise an error.

 Ah, looks like I might have to retract that statement. In bash, cd "" is a no-op

cd /usr

cd ""

pwd #=> /usr

 So Pathname#join, which is equivalent to cd, has the same behavior. Not sure it makes sense, but at least it's consistent.

Although I should note that Dir.chdir("") raises an error.

lovro-bikic (Lovro Bikić) wrote in #note-3:

Furthermore, the example with a whitespace string shows that Pathname#join is capable of adding trailing slashes under certain conditions.

 That's not a trailing slash, that the file/directory " " inside "usr". But it's true that if you do .join("a/") the resulting Pathname has a trailing slash, so

indeed Pathname#join is capable of adding trailing slashes under certain conditions.

06/13/2025 2/3

https://github.com/ruby/spec/blob/f3a071a0fea213c6e909e253e43144a8c49483c6/core/file/join_spec.rb#L67-L101
https://github.com/ruby/spec/blob/f3a071a0fea213c6e909e253e43144a8c49483c6/library/pathname/join_spec.rb
https://github.com/search?q=%2FFile%5C.join%5C(%5B%5Cw._()%5D%2B%2C%20(%22%22%7C%27%27)%5C)%2F%20lang%3Aruby&type=code

I think there should be a clear way for Pathname#join to allow appending trailing slashes to pathnames.

 Perhaps, but personally I don't think that joining with an empty string should be it. Maybe more like .join("./") ?

#5 - 06/05/2025 10:13 AM - akr (Akira Tanaka)

I don't recommend trailing slash on a pathname because it is not portable between operating systems.

The behavior of Pathname (it doesn't add a trailing slash) reflects this my opinion.

https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html

| Two types of implementation have been prevalent; those that ignored trailing characters on all pathnames regardless, and those that permitted

them only on existing directories.

It seems the standard tries to fix this situation, though.

Powered by TCPDF (www.tcpdf.org)

06/13/2025 3/3

https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html
http://www.tcpdf.org

