Ruby - Bug #21391

Inconsistent trailing slash behavior of File.join and Pathname#join with empty strings
06/01/2025 09:42 AM - lovro-bikic (Lovro Bikic)

Status: Open
Priority: Normal
Assignee:

Target version:

ruby -v: ruby 3.4.4 (2025-05-14 revision Backport: 3.2: UNKNOWN, 3.3: UNKNOWN, 3.4:
a38531fd3f) +PRISM [x86_64-darwin23] UNKNOWN

Description

File.join('/usr', '")

=> "/usr/"

Pathname.new ('/usr').join('") .to_s

=> "/usr" # no trailing slash

File.join('/usr', ' ')

=> "/usr/ "
Pathname.new ('/usr').join(' ') .to_s
=> "/usr/ "

File.join with an empty string adds a trailing slash, Pathname#join doesn't.
When Pathname#join argument is a string with empty whitespace, a trailing slash is added (plus whitespace).

| think it's a common use-case to append a trailing slash to Pathname, and currently you have to resort to other methods such as
string interpolation (e.g. in Rails, "#{Rails.root}/") or File.join (e.g. File.join(Rails.root, ")).

In other popular languages, both approaches have been taken:

e os.path.join in Python adds a trailing slash:

import os
os.path.join('/usr', '")
'/usr/'
e Path.join in Rust adds a trailing slash:
use std::path::{Path};
fn main() {
println! ("{}", Path::new("/usr").Jjoin("").display());
// prints "/usr/"
e path.join in Node doesn't add a trailing slash:

const path = require('path');

path.join('/usr', '');

// '/uszr'

e filepath.Join in Go doesn't add a trailing slash:

package main
import ("fmt"; "path/filepath")
func main () {

fmt.Println(filepath.Join ("/usr", ""))
// prints "/usr"

06/13/2025 1/3

https://docs.python.org/3.12/library/os.path.html#os.path.join
https://doc.rust-lang.org/std/path/struct.Path.html#method.join
https://nodejs.org/api/path.html#pathjoinpaths
https://pkg.go.dev/path/filepath#Join

History

#1 - 06/01/2025 11:09 AM - lovro-bikic (Lovro Bikic)

- Subject changed from Inconsistent trailing slash behavior of File#join and Pathname#join with empty strings to Inconsistent trailing slash behavior of
File.join and Pathname#join with empty strings

#2 - 06/01/2025 01:02 PM - Dan0042 (Daniel DeLorme)

It's not the only inconsistent behavior:

File.join("/usr","/var") #=> "/usr/var"
Pathname.new ("/usr") .join("/var") .to_s #=> "/var"
File.join("/usr","../var") #=> "/usr/../var"
Pathname.new ("/usr") .join("../var") .to_s #=> "/var"
File.join("/usr","/../var") #=> "/usr/../var"
Pathname.new ("/usr").join("/../var").to_s #=> "/../var"

File.join simply joins two strings together with a separator, whereas Pathname#join is a logical operation on two paths. It's normal for there to be
differences.

That being said, | feel that Pathname.new('/usr').join(") is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or raise
an error.

#3 - 06/01/2025 02:03 PM - lovro-bikic (Lovro Biki¢)
Dan0042 (Daniel DeLorme) wrote in #note-2:

It's not the only inconsistent behavior: (absolute and relative paths example)

To clarify, | don't expect the result of the two to be equivalent in all cases, it's clearly documented what each method does.

What | am reporting is that there's undocumented and possibly inconsistent behavior when it comes to empty strings. Furthermore, the example with
a whitespace string shows that Pathname#join is capable of adding trailing slashes under certain conditions.

File.join behavior has been tested for empty strings, but Pathname#join hasn't, so it's unclear if this is a bug or an expected difference in behavior.

Dan0042 (Daniel DeLorme) wrote in #note-2:
That being said, | feel that Pathname.new('/usr').join(") is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or

raise an error.

Perhaps, but it's already a common pattern with File.join. Whether it's a nonsensical operation is up for debate, but | think there should be a clear way
for Pathname#join to allow appending trailing slashes to pathnames.

#4 - 06/02/2025 03:26 PM - Dan0042 (Daniel DeLorme)

Dan0042 (Daniel DeLorme) wrote in #note-2:

That being said, | feel that Pathname.new('/usr').join(") is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or
raise an error.

Ah, looks like | might have to retract that statement. In bash, cd "" is a no-op

cd /usr
cd "

pwd #=> /usr

So Pathname#join, which is equivalent to cd, has the same behavior. Not sure it makes sense, but at least it's consistent.
Although | should note that Dir.chdir("") raises an error.

lovro-bikic (Lovro Biki¢) wrote in #note-3:

Furthermore, the example with a whitespace string shows that Pathname#join is capable of adding trailing slashes under certain conditions.

That's not a trailing slash, that the file/directory " " inside "usr". But it's true that if you do .join("a/") the resulting Pathname has a trailing slash, so
indeed Pathnamet#join is capable of adding trailing slashes under certain conditions.

06/13/2025 2/3

https://github.com/ruby/spec/blob/f3a071a0fea213c6e909e253e43144a8c49483c6/core/file/join_spec.rb#L67-L101
https://github.com/ruby/spec/blob/f3a071a0fea213c6e909e253e43144a8c49483c6/library/pathname/join_spec.rb
https://github.com/search?q=%2FFile%5C.join%5C(%5B%5Cw._()%5D%2B%2C%20(%22%22%7C%27%27)%5C)%2F%20lang%3Aruby&type=code

| think there should be a clear way for Pathname#join to allow appending trailing slashes to pathnames.

Perhaps, but personally | don't think that joining with an empty string should be it. Maybe more like .join("./") ?
#5 - 06/05/2025 10:13 AM - akr (Akira Tanaka)

| don't recommend trailing slash on a pathname because it is not portable between operating systems.

The behavior of Pathname (it doesn't add a trailing slash) reflects this my opinion.

https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html

| Two types of implementation have been prevalent; those that ignored trailing characters on all pathnames regardless, and those that permitted
them only on existing directories.

It seems the standard tries to fix this situation, though.

06/13/2025 3/3

https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html
http://www.tcpdf.org

