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Description

File.join('/usr', '')

# => "/usr/"

Pathname.new('/usr').join('').to_s

# => "/usr" # no trailing slash

File.join('/usr', ' ')

# => "/usr/ "

Pathname.new('/usr').join(' ').to_s

# => "/usr/ "

 File.join with an empty string adds a trailing slash, Pathname#join doesn't.

When Pathname#join argument is a string with empty whitespace, a trailing slash is added (plus whitespace).

I think it's a common use-case to append a trailing slash to Pathname, and currently you have to resort to other methods such as

string interpolation (e.g. in Rails, "#{Rails.root}/") or File.join (e.g. File.join(Rails.root, '')).

In other popular languages, both approaches have been taken:

os.path.join in Python adds a trailing slash:

import os

os.path.join('/usr', '')

# '/usr/'

Path.join in Rust adds a trailing slash:

use std::path::{Path};

fn main() {

    println!("{}", Path::new("/usr").join("").display());

    // prints "/usr/"

}

path.join in Node doesn't add a trailing slash:

const path = require('path');

path.join('/usr', '');

// '/usr'

filepath.Join in Go doesn't add a trailing slash:

package main

import ("fmt"; "path/filepath")

func main() {

  fmt.Println(filepath.Join("/usr", ""))

  // prints "/usr"
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https://docs.python.org/3.12/library/os.path.html#os.path.join
https://doc.rust-lang.org/std/path/struct.Path.html#method.join
https://nodejs.org/api/path.html#pathjoinpaths
https://pkg.go.dev/path/filepath#Join


}

History

#1 - 06/01/2025 11:09 AM - lovro-bikic (Lovro Bikić)

- Subject changed from Inconsistent trailing slash behavior of File#join and Pathname#join with empty strings to Inconsistent trailing slash behavior of

File.join and Pathname#join with empty strings

#2 - 06/01/2025 01:02 PM - Dan0042 (Daniel DeLorme)

It's not the only inconsistent behavior:

File.join("/usr","/var")               #=> "/usr/var"

Pathname.new("/usr").join("/var").to_s #=> "/var"

File.join("/usr","../var")               #=> "/usr/../var"

Pathname.new("/usr").join("../var").to_s #=> "/var"

File.join("/usr","/../var")               #=> "/usr/../var"

Pathname.new("/usr").join("/../var").to_s #=> "/../var"

 File.join simply joins two strings together with a separator, whereas Pathname#join is a logical operation on two paths. It's normal for there to be

differences.

That being said, I feel that Pathname.new('/usr').join('') is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or raise

an error.

#3 - 06/01/2025 02:03 PM - lovro-bikic (Lovro Bikić)

Dan0042 (Daniel DeLorme) wrote in #note-2:

It's not the only inconsistent behavior: (absolute and relative paths example)

 To clarify, I don't expect the result of the two to be equivalent in all cases, it's clearly documented what each method does.

What I am reporting is that there's undocumented and possibly inconsistent behavior when it comes to empty strings. Furthermore, the example with

a whitespace string shows that Pathname#join is capable of adding trailing slashes under certain conditions.

File.join behavior has been tested for empty strings, but Pathname#join hasn't, so it's unclear if this is a bug or an expected difference in behavior.

Dan0042 (Daniel DeLorme) wrote in #note-2:

That being said, I feel that Pathname.new('/usr').join('') is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or

raise an error.

 Perhaps, but it's already a common pattern with File.join. Whether it's a nonsensical operation is up for debate, but I think there should be a clear way

for Pathname#join to allow appending trailing slashes to pathnames.

#4 - 06/02/2025 03:26 PM - Dan0042 (Daniel DeLorme)

Dan0042 (Daniel DeLorme) wrote in #note-2:

That being said, I feel that Pathname.new('/usr').join('') is a nonsensical operation. It seems to result in a no-op, but it might be better to warn or

raise an error.

 Ah, looks like I might have to retract that statement. In bash, cd "" is a no-op

cd /usr

cd ""

pwd  #=> /usr

 So Pathname#join, which is equivalent to cd, has the same behavior. Not sure it makes sense, but at least it's consistent.

Although I should note that Dir.chdir("") raises an error.

lovro-bikic (Lovro Bikić) wrote in #note-3:

Furthermore, the example with a whitespace string shows that Pathname#join is capable of adding trailing slashes under certain conditions.

 That's not a trailing slash, that the file/directory " " inside "usr". But it's true that if you do .join("a/") the resulting Pathname has a trailing slash, so

indeed Pathname#join is capable of adding trailing slashes under certain conditions.
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https://github.com/ruby/spec/blob/f3a071a0fea213c6e909e253e43144a8c49483c6/core/file/join_spec.rb#L67-L101
https://github.com/ruby/spec/blob/f3a071a0fea213c6e909e253e43144a8c49483c6/library/pathname/join_spec.rb
https://github.com/search?q=%2FFile%5C.join%5C(%5B%5Cw._()%5D%2B%2C%20(%22%22%7C%27%27)%5C)%2F%20lang%3Aruby&type=code


I think there should be a clear way for Pathname#join to allow appending trailing slashes to pathnames.

 Perhaps, but personally I don't think that joining with an empty string should be it. Maybe more like .join("./") ?

#5 - 06/05/2025 10:13 AM - akr (Akira Tanaka)

I don't recommend trailing slash on a pathname because it is not portable between operating systems.

The behavior of Pathname (it doesn't add a trailing slash) reflects this my opinion.

https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html

| Two types of implementation have been prevalent; those that ignored trailing  characters on all pathnames regardless, and those that permitted

them only on existing directories.

It seems the standard tries to fix this situation, though.
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