
Ruby - Feature #5628

Module#basename

11/14/2011 11:17 AM - trans (Thomas Sawyer)

Status: Feedback

Priority: Normal

Assignee: matz (Yukihiro Matsumoto)

Target version:

Description

Something I use fairly often:

some_module.name.split("::").last

 It's useful for things like factory methods. It would be much nicer if we had:

class Module

 def basename

 name.split("::").last

 end

end

History

#1 - 11/14/2011 02:53 PM - wycats (Yehuda Katz)

Totally agreed. This pattern is fairly common. It would also be nice to

have Module#modules or something, such that Foo::Bar would return [Foo,

Bar].

Yehuda Katz

(ph) 718.877.1325

On Sun, Nov 13, 2011 at 6:17 PM, Thomas Sawyer transfire@gmail.com wrote:

Issue #5628 has been reported by Thomas Sawyer.

Feature #5628: Module#basename

http://redmine.ruby-lang.org/issues/5628

Author: Thomas Sawyer

Status: Open

Priority: Normal

Assignee:

Category:

Target version: 1.9.4

Something I use fairly often:

some_module.name.split("::").last

It's useful for things like factory methods. It would be much nicer if we

had:

class Module

def basename

name.split("::").last

end

end

--

http://redmine.ruby-lang.org

#2 - 11/14/2011 03:32 PM - agrimm (Andrew Grimm)

I'm not sure about the method name. What should happen with File::basename ? Should it call super when there's no arguments, and do its own thing

06/13/2025 1/5

mailto:transfire@gmail.com
https://redmine.ruby-lang.org/issues/5628
https://redmine.ruby-lang.org/issues/5628
http://redmine.ruby-lang.org/issues/5628
http://redmine.ruby-lang.org

when called with an argument? I'd prefer Ruby to tell me that I forgot to pass in a string!

#3 - 11/14/2011 07:23 PM - Eregon (Benoit Daloze)

On 14 November 2011 07:32, Andrew Grimm andrew.j.grimm@gmail.com wrote:

Issue #5628 has been updated by Andrew Grimm.

I'm not sure about the method name. What should happen with File::basename ? Should it call super when there's no arguments, and do its own

thing when called with an argument? I'd prefer Ruby to tell me that I forgot to pass in a string!

 I also agree this would be useful.

But the name 'basename' is probably not the best.

I remember I used simple_name for this, but it's not appealing.

#4 - 11/14/2011 07:59 PM - regularfry (Alex Young)

On 14/11/11 10:19, Benoit Daloze wrote:

On 14 November 2011 07:32, Andrew Grimm andrew.j.grimm@gmail.com wrote:

Issue #5628 has been updated by Andrew Grimm.

I'm not sure about the method name. What should happen with File::basename ? Should it call super when there's no arguments, and do its

own thing when called with an argument? I'd prefer Ruby to tell me that I forgot to pass in a string!

 I also agree this would be useful.

But the name 'basename' is probably not the best.

I remember I used simple_name for this, but it's not appealing.

 I like this - I use .split("::").last all over the place.

A few alternatives, since I agree it would be unfortunate to overload

.basename:

.inner_name

.last_name

.primary_name

.name(false)

.name(:full => false)

--

Alex

#5 - 11/14/2011 08:58 PM - trans (Thomas Sawyer)

@Andrew File::basename is a class method, where as Module#basename is an instance method, so there isn't really any "polymorphic confliction".

I think we'd also be hard pressed to find a better name. I've thought about it quite a bit. And nothing else seems to fit. Ironically #firstname makes the

most semantic sense for English speakers. Since Ruby is Japanese in origin, then #lastname is a fun option to confound Americans ;)

I think #basename is best b/c there is a common correspondence between files and classes, eg. lib/foo/some_class will usually contain

Foo::SomeClass. There is also Pathname#basename.

#6 - 11/14/2011 11:53 PM - Eregon (Benoit Daloze)

On 14 November 2011 12:58, Thomas Sawyer transfire@gmail.com wrote:

Issue #5628 has been updated by Thomas Sawyer.

@Andrew File::basename is a class method, where as Module#basename is an instance method, so there isn't really any "polymorphic

confliction".

 Are you so sure? ;-)

A class method is an instance method on the class, so yes

File::basename conflicts with Module#basename:

class Module

def basename

name.split("::").last

end

06/13/2025 2/5

mailto:andrew.j.grimm@gmail.com
https://redmine.ruby-lang.org/issues/5628
mailto:andrew.j.grimm@gmail.com
https://redmine.ruby-lang.org/issues/5628
mailto:transfire@gmail.com
https://redmine.ruby-lang.org/issues/5628

end

Enumerator::Generator.basename

=> "Generator"

File.basename

ArgumentError: wrong number of arguments (0 for 1..2)

from (irb):7:in `basename'

File.basename 'file.ext'

=> "file.ext"

 So one calling 'basename' on a Module can expect either a String or an

ArgumentError.

And changing File::basename to be Module#basename when no arguments

are given does not seem a good design at all.

#7 - 11/15/2011 12:10 AM - trans (Thomas Sawyer)

You're right. File is also Module (subclass of Class). So, yes, another name is needed, or ::File.basename accepted as an exception.

In my defense, I always thought File class methods for file handling were bad mojo! It would be much better if Pathname were core and File class

methods non-existent (IMHO).

#8 - 11/15/2011 05:29 AM - wycats (Yehuda Katz)

I would probably be ok with mod.modules.last.name to be honest.

Yehuda Katz

(ph) 718.877.1325

On Mon, Nov 14, 2011 at 7:12 AM, Thomas Sawyer transfire@gmail.com wrote:

Issue #5628 has been updated by Thomas Sawyer.

You're right. File is also Module (subclass of Class). So, yes, another

name is needed, or ::File.basename accepted as an exception.

In my defense, I always thought File class methods for file handling were

bad mojo! It would be much better if Pathname were core and File class

methods non-existent (IMHO).

Feature #5628: Module#basename

http://redmine.ruby-lang.org/issues/5628

Author: Thomas Sawyer

Status: Open

Priority: Normal

Assignee:

Category:

Target version: 1.9.4

Something I use fairly often:

some_module.name.split("::").last

It's useful for things like factory methods. It would be much nicer if we

had:

class Module

def basename

name.split("::").last

end

end

--

http://redmine.ruby-lang.org

#9 - 11/15/2011 05:59 AM - trans (Thomas Sawyer)

I would probably be ok with mod.modules.last.name to be honest.

06/13/2025 3/5

mailto:transfire@gmail.com
https://redmine.ruby-lang.org/issues/5628
https://redmine.ruby-lang.org/issues/5628
http://redmine.ruby-lang.org/issues/5628
http://redmine.ruby-lang.org

 Then might as well add mod.lastname too. If the implementation is anything like the pure-Ruby one, it is more efficient to have a dedicated method.

And I much prefer the shorter syntax. If not #lastname then maybe #modname.

#10 - 03/28/2012 12:17 AM - mame (Yusuke Endoh)

- Assignee set to matz (Yukihiro Matsumoto)

#11 - 03/31/2012 11:09 AM - mame (Yusuke Endoh)

- Status changed from Open to Assigned

#12 - 03/31/2012 11:15 AM - mame (Yusuke Endoh)

- Target version changed from 1.9.4 to 2.0.0

Hello,

2011/11/14 Thomas Sawyer transfire@gmail.com:

Something I use fairly often:

some_module.name.split("::").last

 Personally, I've never used such a hack. When do you use?

--

Yusuke Endoh mame@tsg.ne.jp

#13 - 03/31/2012 11:29 AM - trans (Thomas Sawyer)

Common case (for me) is when user selects a "plug-in" via a command line option. For example a pseudo test framework:

$ mytest --reporter progress

 Then in code:

module MyTestFramework

 def self.reporters

 @reporters ||= {}

 end

 module Reporters

 class Base

 def self.inherited(subclass)

 MyTestFramework.reporters[subclass.basename.downcase] = subclass

 end

 end

 class Progress < Base

 ...

 end

 end

end

 Then reporters are very easy to lookup with command line option.

MyTestFramework.reporters[reporter] # i.e. reporter = 'progress'

 That's just one example, but I have found the basic pattern to be useful in many such "pluggable" designs.

#14 - 03/31/2012 06:24 PM - regularfry (Alex Young)

=begin

I'm doing something remarkably similar to this for mapping command-line subcommand selection into a module's namespace. It's very handy.

=end

#15 - 04/01/2012 01:29 AM - matz (Yukihiro Matsumoto)

- Status changed from Assigned to Feedback

I am not sure if it's worth adding to the core. It is so easy to add by third-party lib.

Besides that, even though the term "basename" is understandable from analogy to UNIX command name, but the term includes "base" might cause

06/13/2025 4/5

mailto:transfire@gmail.com
mailto:mame@tsg.ne.jp

confusion, since "base" in object class has different meaning (especially C++ and other languages).

Matz.

#16 - 04/01/2012 03:36 AM - trans (Thomas Sawyer)

You are right about name, it would have to be something else besides #basename.

Yehuda Katz said he would probably be ok with mod.modules.last.name, to which I commented, we may as well add mod.lastname.

#17 - 10/25/2012 05:49 PM - yhara (Yutaka HARA)

- Target version changed from 2.0.0 to 2.6

#18 - 12/25/2017 06:15 PM - naruse (Yui NARUSE)

- Target version deleted (2.6)

#19 - 08/29/2020 05:01 PM - fatkodima (Dima Fatko)

Used this numerous times.

I like this suggestion:

regularfry (Alex Young) wrote in #note-4:

.name(false)

.name(:full => false)

 What ruby-core think on this?

Powered by TCPDF (www.tcpdf.org)

06/13/2025 5/5

http://www.tcpdf.org

