Finding Faults:
Manual Testing vs. Random Testing+ vs. User Reports

Ilinca Ciupa, Bertrand Meyer, Manuel Oriol, Alexander Pretschner
Department of Computer Science, ETH Zurich, Switzerland
{ilinca.ciupa, bertrand.meyer, manuel.oriol, alexander.pretschner } @inf.ethz.ch

Abstract

The usual way to compare testing strategies, whether
theoretically or empirically, is to compare the number of
faults they detect. To ascertain definitely that a testing strat-
egy is better than another, this is a rather coarse criterion:
shouldn’t the nature of faults matter as well as their num-
ber? The empirical study reported here confirms this con-
jecture. An analysis of faults detected in Eliffel libraries
through three different techniques—random tests, manual
tests, and user incident reports—shows that each is good at
uncovering significantly different kinds of faults. None of
the techniques subsumes any of the others, but each brings
distinct contributions.

1 Introduction

A substantial amount of research in software testing has
been devoted to developing new or improving existing fault
detection strategies. It is unclear, however, how related tools
and strategies compare in terms of their fault detection abil-
ity. Many studies [19, 20, 17, 27, 22, 38, 15, 23, 36, 24, 7]
have tried to answer this question. While some studies have
provided analytical answers such as subsumption relation-
ships, others have focused on the number of faults detected
by the different strategies. In sum, none of the latter studies
conclusively shows that one testing strategy clearly outper-
forms another in terms of the number of detected faults, not
even in one restricted application domain.

Earlier work [11, 12, 36] has led us to conjecture that
the number of faults is too coarse a criterion for assess-
ing testing strategies. Consequently, in the experiments de-
scribed in this paper, we investigate whether or not the kind
of faults is a more suitable discriminator between different
fault detection strategies. This work’s main result is empiri-
cal evidence that different strategies do indeed uncover sig-
nificantly different kinds of faults. This complements the
seminal work by Basili et al. [5] who compared the types
of faults found by code reading, manual functional testing,

and manual structural testing. It also fits smoothly with our
previous work on model-based testing that exhibited large
differences between faults found with random testing and
with other strategies [36] (where we acknowledged but did
not analyze the differences).

The three fault detection strategies analyzed in this paper
are manual unit testing, field use (with corresponding bug
reports), and automated random testing. They are represen-
tative of today’s state of the art: the first two are widely used
in industry, and the last one reflects one of the research com-
munity’s current focuses on automated testing solutions.
Although random testing is only one of the trends in current
research, it is attractive because of its simplicity and be-
cause generating test cases is comparatively cheap. More-
over, there is no conclusive evidence that random testing is
any worse at finding faults than other automated strategies.

Random input generation delivers the best results when
combined with an automated oracle, due to the numerous
and untargeted tests that it produces. For a human it would
be tedious to wade through these tests, out of which only
a small proportion are fault-revealing. The power of ran-
dom testing can be fully exploited only if the pass/fail de-
cision is automated. A great part of the existing work on
fully automated testing [8, 14, 33, 34, 32] thus uses built-
in test oracles in the form of contracts. These can either
be written by developers—programmers actually do write
contracts when possible [9]—or inferred by a tool [16] from
runs of the system under test. Preconditions, postconditions
and class invariants provide an automated oracle with a level
of abstraction [37] that is usually far more fine-grained than
the simple robustness assessment that can be obtained from
checking whether or not the system crashed. Satisfying pre-
conditions is a theoretical challenge [3], but not necessarily
a practical one.

In the experiment presented here, we used the AutoTest
tool [29] for investigating the performance of random test-
ing. AutoTest performs fully automated testing of con-
tracted O-O software: it calls the routines (methods) of the
classes under test with randomly generated inputs (objects),
and, if the preconditions of these routines are satisfied, it

checks if contracts are fulfilled while running the tests. Any
contract violation that occurs or any other thrown exception
signals a fault. AutoTest’s strategy for creating inputs is not
purely random: it is random combined with limit testing,
as explained in §2. Previous experiments [11] have shown
that this strategy is much more effective at uncovering faults
than purely random testing at no extra cost in terms of ex-
ecution time, so we consider it more relevant to investigate
the more effective strategy. As this strategy is still random-
based but also uses special predefined values (which have
a high impact on the results), in the rest of this paper we
will refer to it as random testing+. We ran AutoTest on 39
classes from a widely-used Eiffel library, called EiffelBase,
which we did not modify in any way. AutoTest found a
total of 165 faults in these classes. To investigate the per-
formance of manual testing, we analyzed the faults found
by students who were explicitly asked to test three classes,
two created by us and one slightly adapted from EiffelBase.
Faults in the field are taken from user-submitted bug reports
on the EiffelBase library. We evaluated these three ways of
detecting faults by comparing the number and distribution
of faults they detect via a custom-made classification that
contains 21 categories.

Contributions. Fault classifications have previously
been used to analyze the difference between inspections and
software testing. Yet, as far as we know, this is the first
study that (1) develops a classification of faults specifically
adapted to contracted O-O software, and (2) uses this classi-
fication to compare an automated random testing strategy to
manual testing, and to furthermore compare testing results
to faults detected in the field.

The main results of the comparison are the following.
Random testing+ is particularly good at detecting problems
found in specifications. It is not so good at detecting prob-
lems of overly strong preconditions, infinite loops, and “se-
mantic” problems as discussed below. It detects most of
the faults uncovered by manual testing, plus some. This
suggests that random testing+ should be applied before hu-
man testers enter the loop. In addition, random testing+
finds only a small percentage of user-reported faults; this
suggests that random testing+ cannot replace collecting bug
reports from software users. A more general conclusion is
that testing strategies should indeed be compared in terms
of the kind of faults and not only of the number of faults that
they find, because only such a comparison can shed light on
the particular strengths and weaknesses of each strategy.

Overview. §2 provides the background for random tests
of O-0O software. §3 presents a classification of faults. The
experiments and their discussion are the subject of §4. After
putting our work in context in §5, we conclude in §6.

2 Background

This section provides an overview of how AutoTest gen-
erates and executes random tests for Eiffel programs. The
tool itself is not the focus of this paper and has previously
been described elsewhere [11, 12].

The units under test are routines of Eiffel classes. As-
sume that a routine m with return type R and formal argu-
ments pi,...,p, of types Cq,...,C, is defined in some
class C'. In order to test m, we must generate an ob-
ject ¢ of type C' and actual arguments ay, ..., a, of types
C1,...,C,. Since a test case consists of both input and ex-
pected output, we also have to generate an object r of type
R that represents the expected output. We can then exe-
cute c.m(ay, . . ., a,), compare the resulting object to r, and
check if the effect of m on ¢ and the a; is as expected. The
inputs (the target object c and the argument objects a;) can
be generated through constructor calls, which themselves
are routines and may need arguments; hence, the genera-
tion procedure is recursive.

For contract-enabled languages such as Eiffel, JML or
Spec#, there is an obvious simplification of the above ap-
proach. Rather than generating an object r of type R and
checking the effects of executing m on c and the a;, we
can use the routine and class contracts. Upon execution of
cm(ay,...,a,), we check if the postcondition of m and
the invariant of C are satisfied. In other words, we get an
oracle for free, namely in the form of postconditions and
invariants. Because it is an abstraction, this oracle is usu-
ally not able to predict the precise values that are a result
of executing the test. Of course, the contract itself may be
incorrect (§3), but this is a general problem with implement-
ing oracles. Furthermore, we have to satisfy the respective
precondition whenever a routine (including a constructor) is
called.

When generating the input objects for each routine, it
is reasonable not to create a new object each time with a
constructor call, but also to keep a pool of available ob-
jects. This is because constructor calls tend to generate
rather “simple” objects. As a consequence, AutoTest re-
tains objects that have been created and stores them in the
pool. Whenever it needs an object as target or argument
for a call to a routine under test, it randomly picks one of
the available objects from the pool. When the routine call
is done executing, the object is returned to the pool. With
a preset frequency, AutoTest also generates a new object,
which it adds to the pool. In this way, the objects in the
pool are likely to get modified by the routines under test.
Over time, this leads to objects or object structures that are
intuitively interesting for testing because they are more rep-
resentative of objects created and manipulated during typi-
cal runs than freshly created objects alone. When values of
primitive types are needed as inputs, AutoTest either selects

them from a predefined set of values which includes limit
values, or randomly selects one of the possible values for
that type. This use of limit values makes the strategy not
purely random, so we use the name “random testing+” to
refer to it.

Test case generation then means to generate Eiffel code
that creates objects and executes their operations — the rou-
tines under test. By running this code in an interpreter, con-
tract violations and other uncaught exceptions are logged.
These violations are the failures that AutoTest can detect.

In this paper, we adopt the following terminology. A fail-
ure is an observable difference between expected and actual
output. An error is a program state that is not in accordance
with the intended state. Errors may (but do not have to)
lead to failures. A fault is the reason for the error and in-
cludes incorrect implementations and invalid specifications,
i.e., specifications inconsistent with the actual requirements.

3 C(lassifications of faults

Two dimensions characterize a fault in programming lan-
guages with support for embedding executable specifica-
tions. The first is the fault’s location: whether it occurs
in the specification or in the implementation. The second
is its cause, the real underlying issue. The following para-
graphs discuss both dimensions and introduce the resulting
fault categories. The classification is not domain-specific.
Although, as discussed in §5, a multitude of other fault clas-
sification schemes exists, we are not aware of the existence
of any such schemes for contracted code.

3.1 Specification&implementation faults

In contract-equipped programs, the software specifica-
tion is embedded in the software itself. Among other things,
failures are triggered by violations of the contracts. Hence,
faults can be located both in the implementation and in the
contracts. A specification fault is a mismatch between the
intended functionality of a software element and its explicit
specification (in the context of this study, the contract).
Specification faults reflect specifications that are not valid,
in the sense that they do not conform to user requirements.
The correction of specification faults necessitates changing
the specification (plus possibly also the implementation)
[36]. As an example, consider a routine deposit of a
class BANK_ACCOUNT with an integer argument represent-
ing the amount of money to be deposited to the account.
The intention is for that argument to be positive, and the
routine only works correctly in that case. If the precondi-
tion of deposit does not list this property, the routine has
a specification fault. In contrast, an implementation fault
occurs when a piece of software does not fulfill its explicit

specification, here its contract. The correction of imple-
mentation faults never requires changing the specification.
Suppose the class BANK_ACCOUNT also contains a routine
add_value that should add a value, positive or negative, to
the account. If the precondition does not specify any con-
straint on the argument but the code assumes that it is a
positive value, then there is a fault in the implementation.

Naturally, this classification assumes that we have ac-
cess to the “intended specification” of the software: the real
specification that it should fulfill. When analyzing the faults
in real-world software, this is not always possible. Dis-
cussing it with the original developers is also in most cases
difficult or even impossible. To infer the intended specifi-
cation, one has no choice but to rely on subjective evidence
such as (1) the comments in the routines under test, (2) the
specifications and implementations of other routines in the
same class, and (3) the ways in which the tested routines
are called from various parts of the software system. This
strategy resembles how a developer not familiar with the
class would proceed in order to find out what the class is
supposed to do.

3.2 Classification of faults by their cause

In practice, several classes of specification and imple-
mentation faults tend to recur over and over again. Their
study makes it possible to obtain a finer-grained classifica-
tion by grouping these faults according to the corresponding
human mistakes or omissions — their causes. By analyzing
the cause for all faults encountered in our study, we obtained
the categories described below. The classification was cre-
ated with practical applicability in mind and mainly focuses
on either the mistake in the programmer’s thinking or the
mis-used programming mechanism that led to the fault.

Specification faults. An analysis of specification faults
led to the following cause-based categories, grouped by the
part or type of contract that they apply to.

1. In terms of the precondition, we identified the follow-
ing faults.

e Missing non-voidness precondition: A precon-
dition part specifying that a routine argument,
class attribute, or another reference reachable
through an argument or attribute should not be
void (null) is missing.

e Missing min/max-related precondition: a pre-
condition part specifying that an integer argu-
ment, class attribute, or another integer reachable
through an argument or attribute should have a
certain value related to the minimum/maximum
possible value for integers is missing.

e Missing other precondition part: a precondi-
tion is under-specified in another way than the
previously mentioned cases.

e Precondition disjunction due to inheritance:
with multiple inheritance it can be the case that a
routine merges several others, inherited from dif-
ferent classes. In this case, the preconditions of
the merged routines are composed with the most
current ones using a disjunction. This fault cat-
egory refers to faults that appear because of this
language mechanism.

e Precondition too restrictive: the precondition
of a routine is stronger than it should be.

2. In terms of the postcondition, the faults are wrong
postcondition (the postcondition of a routine is incor-
rect) and missing postcondition (the postcondition of
a routine was omitted).

3. In terms of invariants, we identified only one fault.
This is the missing invariant clause: a part of a class
invariant is missing.

4. Tn terms of check! assertions, one fault was identi-
fied, namely the wrong check assertion: the routine
contains a check condition that does not hold.

5. Finally, the following faults apply to all contracts.

e Faulty specification supplier: a routine called
from the contract of the routine under test con-
tains a fault, which makes the contract of the rou-
tine under test incorrect.

¢ Calling a routine outside its precondition from
a contract: the fault appears because the con-
tract of the routine under test calls another rou-
tine without fulfilling the latter’s precondition.

e Min/max int related fault in specification
(other than missing precondition): the specifica-
tion of the routine under test lacks some condi-
tion(s) related to the minimum/maximum possi-
ble value for integers.

The categories in this classification have various degrees
of granularity. The reason is that the classification was
driven by the actual faults found by AutoTest, by manual
testers, and by users of the software. The categories thus
emerged by identifying recurring patterns in existing faults,
rather than trying to fit faults into predefined, fixed cate-
gories. Where such patterns could not be found, the cate-
gories are rather coarse-grained.

! An Eiffel check instruction is similar to an “assert” in C and C++. It
states a condition that should be fulfilled at a certain point in the execution
of a block of code. If contract monitoring is on and the condition does not
hold, the execution triggers an exception.

Implementation faults. The analysis of implementation
faults led to the following cause-based categories.

e Faulty implementation supplier: a routine called
from the body of the routine under test contains a fault,
which does not allow the routine under test to function
properly.

e Wrong export status: this category refers particu-
larly to the case of creation procedures (constructors),
which in Eiffel can also be exported as normal rou-
tines. The faults classified in this category are due
to routines being exported as both creation procedures
and normal routines, but which, when called as nor-
mal routines, do not fulfill their contract, as they were
meant to be used only as creation procedures.

e External fault: Eiffel allows the embedding of rou-
tines written in C. This category refers to faults located
in such routines.

e Missing implementation: the body of a routine is
empty.

e Case not treated: the implementation does not treat
one of the cases that can appear, typically in an if
branch.

e Catcall: due to the implementation of type covariance
in Eiffel, the compiler cannot detect some routine calls
that are not available in the actual type of the target ob-
ject. Such violations can only be detected at runtime.
This class groups faults that stem from this deficiency
of the type system.

e Calling a routine outside its precondition from the
implementation: the fault appears because the routine
under test calls another routine without fulfilling the
latter’s precondition.

e Wrong operator semantics: the implementation of an
operator is faulty, in the sense that it causes the appli-
cation of the operator to have a different effect than the
expected one.

¢ Infinite loop: executing the routine can trigger an infi-
nite loop, due to a fault in the loop exit condition.

Three of the above categories are specific to the Eif-
fel language and would not be directly applicable to lan-
guages which do not support multiple inheritance (precon-
dition disjunction due to inheritance), covariant definitions
(catcalls), or the inclusion of code written in other program-
ming languages (external faults). All other categories are
directly applicable to other object-oriented languages with
support for embedded and executable specifications.

4 Experimental results

This section first describes the artifacts examined in the
experiment and how the experiment was conducted. Then it

presents the results of the experiment in terms of: (1) a com-
parison of the type of faults found by AutoTest and reported
by users for the EiffelBase library; and (2) a comparison of
the type of faults found by AutoTest and by manual testers
for a set of classes created by the authors of this paper and
one class taken almost verbatim from the EiffelBase library.
We then summarize the results, discuss the most important
findings, and conclude with a presentation of the threats to
the validity of generalizations of the results.

4.1 Experiment

To see how random testing+ performs, we ran AutoTest
on classes from the EiffelBase library: the most widely used
Eiffel library, containing classes implementing various data
structures and other common facilities. Overall, we ran-
domly tested 39 classes from the 5.6 version of the library
and found a total of 165 faults in them.

We then examined bug reports from users of the Eiffel-
Base library. From the database of bug reports, we selected
those referring to faults present in version 5.6 of the Eiffel-
Base library and excluded those which were declared by the
library developers to not be faults or those that referred to
the .NET version of EiffelBase, which we cannot test with
AutoTest. Our analysis hence refers to the remaining 28 bug
reports fulfilling these criteria.

To determine how manual testing compares to random
testing+, we organized a competition for students of com-
puter science at ETH Zurich. 13 students participated in
the competition. They were given 3 classes to test. The
task was to find as many faults as possible in these 3 classes
in 2 hours. Two of the classes were written by us (with
implementation, contracts, and purposely introduced faults
from various of the above categories), and one was an
adapted version of the STRING class from EiffelBase. Ta-
ble 1 shows some code metrics for these 3 classes: number
of lines of code (LOC), number of lines of contract code
(LOCC), and number of routines. We intentionally chose
one class that was significantly larger and more complex
than the others to see how the students would cope with it.
Although such a class is harder to test, intuition suggests
that it is more likely to contain faults. The students had
varying experience in testing O-O software; most of them
had had at least a few lectures on the topic. 9 out of the 13
students declared that they usually or always unit test their
code as they write it. They were allowed to use any tech-
nique to find faults in the software under test, except for
running AutoTest on it. Although they would have been al-
lowed to use other tools (and this was announced before the
competition), all the students performed only manual test-
ing. In the end they had to produce test cases revealing the
faults that they had found, through a contract violation or
another thrown exception.

Table 1. Classes tested manually

Class LOC LOCC #Methods
MY _STRING 2444 221 116
UTILS 54 3 3
BANK_ACCOUNT 74 13 4

Table 2. Random Testing+ vs. User Reports
Spec. faults Implem. faults

103 (62.42%) 62 (37.58%)
10 (35.71%) 18 (64.29%)

AutoTest
User reports

4.2 Random testing+ vs. user reports

Table 2 shows the distribution of specification and im-
plementation faults (1) found by random testing+ (labeled
“AutoTest” in the table) 39 classes from the EiffelBase li-
brary and (2) recorded in bug reports from the users for the
same library. Note that the results in this table refer to more
classes tested with AutoTest than for which there are user
reports. This is justified by the fact that even if there are no
user reports on a specific class, this does not mean that the
class was not used in the field.

Almost two thirds of the faults found by random testing+
were located in the specification of the software, that is, in
the contracts. This indicates that random testing+ is espe-
cially good at finding faults in the contracts. In the case of
faults collected from users’ bug reports, the situation is re-
versed: almost two thirds of user reports refer to faults in
the implementation.

Table 3 presents a finer-grained view of the specification
and implementation faults found by AutoTest and recorded
in users’ bug reports, grouping the faults by their cause,
as explained in §3. This detailed comparison sheds more
light on differences between faults reported by users and
those found by automated testing, and exposes strengths and
weaknesses of both approaches. One difference that stands
out refers to faults related to extreme values (either Void
references or numbers at the lower or higher end of their
representation interval) in the specification. Around 30% of
the faults uncovered by AutoTest are in one of these cate-
gories, whereas users do not report any such faults. Possi-
ble explanations are that such situations are not encountered
in practice or simply that users do not consider them to be
worth reporting. Furthermore, it is possible that users use
their intuition of the range of acceptable inputs for a rou-
tine rather than using that routine’s precondition, and their
intuition corresponds to the real specification, not to the er-
roneous one provided in the contracts.

A further difference results from AutoTest’s ability to de-
tect faults from the categories “faulty specification supplier”
and “faulty implementation supplier.” In other words, Au-
toTest can report that certain routines do not work properly

Table 3. Random Testing+ vs. User Reports: Specification and Implementation Faults

Cause

Id Number of faults
AutoTest Users

Percentage of faults
AutoTest Users

Specification faults

Missing non-voidness precondition S1 22 0 13.33% 0.00%
Missing min/max-related precondition S2 23 0 13.94% 0.00%
Missing other precondition part S3 28 3 16.97% 10.71%
Faulty specification supplier S4 7 0 4.24% 0.00%
Calling a routine outside its precondition from a contract S5 0 0 0.00% 0.00%
Min/max int related fault in spec (other than missing precondition) S6 4 0 2.42% 0.00%
Precondition disjunction due to inheritance S7 2 0 1.21% 0.00%
Missing invariant clause S8 3 0 1.82% 0.00%
Precondition too restrictive S9 0 2 0.00% 7.14%
Wrong postcondition S10 12 2 7.27% 7.14%
Wrong check assertion S11 2 0 1.21% 0.00%
Missing postcondition S12 0 3 0.00% 10.71%
Specification faults total 103 10 62.42% 35.71%
Implementation faults

Faulty implementation supplier I1 47 0 28.48% 0.00%
Wrong export status 12 0 2 0.00% 7.14%
External fault 13 1 0 0.61% 0.00%
Missing implementation 14 2 2 1.21% 7.14%
Case not treated 5 4 7 2.42% 25.00%
Catcall 16 3 1 1.82% 3.57%
Calling a routine outside its precondition from the implementation 17 5 1 3.03% 3.57%
Wrong operator semantics I8 0 1 0.00% 3.57%
Infinite loop 19 0 4 0.00% 14.29%
Implementation faults total 62 18 37.58% 64.29%

because they depend on other faulty routines. Users never
report this kind of faults: they only indicate the routine that
contains the fault, without mentioning other routines that
also do not work correctly because of the fault in their sup-
plier. An important piece of information gets lost this way:
after fixing the fault, there is no incentive to check whether
the clients of the routine now work properly, meaning to
check that the correction in the supplier allows the client to
work properly too.

Random testing+ is particularly bad at detecting some
categories of faults: overly strong preconditions, faults that
are a result of wrong operator semantics, infinite loops,
missing routine implementations. None of the 165 faults
found by AutoTest and examined in this study belonged to
any of the first three categories, but the users reported at
least one fault in each category. It is not surprising that Au-
toTest has trouble detecting such faults. Firstly, if AutoTest
tries to call a routine with an overly strong precondition and
does not fulfill this precondition, the testing engine will sim-
ply classify the test case as invalid and try again to satisfy
the routine’s precondition by using other inputs. Secondly,
AutoTest also cannot detect infinite loops: if the execution
of a test case times out, it will classify the test case as “bad
response”; this means that it is not possible for the tool to

decide if a fault was found or not — the user must inspect
the test case and decide. Thirdly, users of the EiffelBase
library could report faults related to operators being imple-
mented with the wrong semantics. Naturally, to decide this,
it is necessary to know the intended specification of the op-
erator. Finally, AutoTest also cannot detect that the imple-
mentation of a routine body is missing unless this triggers a
contract violation. It is of course possible to find empty rou-
tine bodies statically, but it is not possible to decide if this is
indeed a fault. Note that in these cases, the overall number
of detected faults is rather low, which suggests special care
in generalizing these findings.

We also ran AutoTest exclusively on the classes for
which users reported faults to see if it would find those
faults; three of the classes with reported faults are excluded
from the analysis because of technical limitations of Au-
toTest (it cannot test expanded and built-in classes). When
run on each class in 10 sessions of 3 minutes, AutoTest
found a total of 268 faults>. 4 of these were also reported
by users, so 21 faults are solely reported by users and 264
solely by AutoTest. AutoTest detected only one of the 18

2However, 183 of these faults were found through failures caused by
the classes RAW_FILE, PLAIN_.TEXT_FILE and DIRECTORY through
operating system signals and I/O exceptions, so it is debatable if these can
indeed be considered faults in the software.

Table 4. Random Testing+ vs. Manual Testing

Id Class # testers AutoTest

S1 BANK_ACCOUNT 8 (61.5%)

S1 UTILS 5 (38.5%) X

S1 MY_STRING 1(7.7%) X

S2 BANK_ACCOUNT 8 (61.5%)

S2 UTILS 7 (53.8%) X

S2 MY_STRING 1(7.7%) X

S2 MY_STRING 5 (38.5%) X

S2 MY_STRING 1 (7.7%) X

S2 MY_STRING 0(0%) X

S3 BANK_ACCOUNT 1(7.7%) X

S3 UTILS 4 (30.8%) X
S10 MY_STRING 1(7.7%)

12 BANK_ACCOUNT 4 (30.8%) X

16 MY _STRING 1 (7.7%)

17 MY_STRING 0(0%) X

19 MY_STRING 9 (69.2%)

implementation faults (5%) reported by users and 3 out
of the 7 specification faults (43%). While theoretically it
could, AutoTest did not find the user-reported faults belong-
ing to such categories as “wrong export status” or “case not
treated.” It is important to note though that longer testing
time might have produced different results.

4.3 Random testing+ vs. manual testing

To investigate how AutoTest performs when compared
to manual testers (the students participating in the compe-
tition), we ran AutoTest on the 3 classes that were tested
manually. The tool tested each class in 30 sessions of 3
minutes, where each session used a different seed for the
pseudo-random number generator. Table 4 shows a sum-
mary of the results. It displays a categorization of the fault
according to the classification scheme used in this paper (the
category ids are used here; they can be looked up in Table
3), the name of the class where a fault was found by either
AutoTest or the manual testers, how many of the manual
testers found the fault out of the total 13 and a percent rep-
resentation of the same information, and finally, in the last
column, x’s mark the faults that AutoTest detected.

The table shows that AutoTest found 9 out of the 14
faults that humans detected and 2 faults that humans did
not find. The two faults that only AutoTest found do not
exhibit any special characteristics, but they occur in class
MY_STRING, which is considerably larger than the other 2
classes. We conjecture that, because of its size, students
tested this class less thoroughly than the others. This high-
lights one of the (possibly obvious) strengths of the auto-
matic testing tool: the sheer number of tests that it generates
and runs per time unit and the resulting routine coverage.

Conversely, three of the faults that AutoTest does not de-
tect were found by more than 60% of the testers. One of
these faults is due to an infinite loop; AutoTest, as discussed
above, classifies timeouts as test cases with a bad response
and not as failures. The other two faults belong to the
categories “missing non-voidness precondition” and “miss-
ing min/max-related precondition.” Although the strength
of AutoTest lies partly in detecting exactly these kinds of
faults, the tool fails to find them for these particular exam-
ples in the limited time it is given. This once again stresses
the role that randomness plays in the approach, with both
advantages and disadvantages.

4.4 Summary and consequences

Three main observations emerge from the preceding
analysis. First, random testing+ is good at detecting prob-
lems in specifications. It is particularly good with problems
that are related to limit values. Problems of this kind are not
reported in the field but tend to be caught by manual testers.

Second, AutoTest is not good at detecting problems with
too strong preconditions, infinite loops, missing implemen-
tations and operator semantics. This is due to the very na-
ture of automated random testing.

Third, in a comparison between automated and manual
testing (i.e., not taking into consideration bug reports), Au-
toTest detects almost all problems also detected by humans,
plus a few other problems. For model-based testing, this
confirms the findings of an earlier study [36] and speaks
strongly in favor of running the tool on the code before hav-
ing it tested by humans. The human testers may find faults
that the tool misses, but a great part of their work will be
done at no other cost than CPU power.

4.5 Discussion

AutoTest finds significantly more faults in contracts than
in implementations. This might seem surprising, given that
contracts are Boolean expressions and typically take up far
fewer lines of code than the implementation (14% of the
code on average in our study). Two questions naturally
arise. One, are there more faults in contracts than in im-
plementations, i.e., do the results obtained with AutoTest
reflect the actual distribution of faults? Two, is it interest-
ing at all to find faults in contracts, knowing that contract
checking is usually disabled in production code?

We do not know the answer to the first question. We can-
not deduce from our results that there are indeed more prob-
lems in specifications than in implementations. The only
thing we can deduce is that random testing that takes special
care of extreme values detects more faults in specifications
than in implementations. Around 45% of the faults are un-
covered in preconditions, showing that programmers often

fail to specify correctly the range of inputs or conditions on
the state of the input accepted by routines.

It is also important to point out that a significant pro-
portion of specification errors are due to void-related is-
sues, which are scheduled to go away as the new versions of
Eiffel, starting with 6.2 (Spring 2008), implement the “at-
tached type” mechanism [31] which removes the problem
by making non-voidness part of the type system and catches
violations at compile time rather than run time.

As to the question of whether it is useful or interesting
to detect and analyze faults in contracts, one must keep in
mind that most often the same person writes both the con-
tract and the body of a routine. A fault in the contract sig-
nals a mistake in this person’s thinking just as a fault in the
routine body does. Once the routine has been implemented,
client programmers who want to use its functionality from
other classes look at its contract to understand under what
conditions the routine can be called (expressed by its pre-
condition) and what the routine does (the postcondition ex-
presses the effect of calling the routine on the state). Hence,
if the routine’s contract is incorrect, the routine will most
likely be used incorrectly by its callers, which will produce
a chain of faulty routines. The validity of the contract is
thus as important as the correctness of the implementation.

The existence of contracts embedded in the software is
a key assumption both for the proposed fault classification
and for the automated testing strategy used. We do not con-
sider this to be too strong an assumption because it has been
shown [9] that programmers willingly use a language’s in-
tegrated support for Design by Contract, if available.

The evaluation of the performance of random testing+
performed here always considers the faults that AutoTest
finds over several runs, using different seeds for the pseudo-
random number generator. In previous work [12] we have
shown that random testing+ is predictable in the number of
faults that it finds, but not in the kind of faults that it finds.
Hence, in order to reliably assess the types of faults that
random testing+ finds, it is necessary to sum up the results
of different runs of the tool.

In addition to pointing out strengths and weaknesses of
a certain testing strategy, a classification of repeatedly oc-
curring faults based on the cause of the fault also brings in-
sights into those mechanisms of the programming language
that are particularly error-prone. For instance, faults due to
wrong export status of creation procedures show that pro-
grammers do not master the property of the language that
allows creation procedures to be exported both for object
creation and for being used as normal routines.

4.6 Threats to validity

The biggest threat to the generalization of the results pre-
sented here is the small size of the set of manually tested

classes, of the analyzed user bug reports, and of the group
of human testers participating in the study. In future work
we intend to expand this study to larger and more diverse
code bases. Nevertheless, we consider the results presented
here to be a first major step in the direction of comparing
random and manual testing and user bug reports by the type
of faults they reveal.

As explained in §4.1, we only had access to bug reports
submitted by users for the EiffelBase library. Naturally,
these are not all the faults found in field use of the library,
but only the ones that users took the time to report. It is in-
teresting to note that for all but one of these reports the users
set the priority to either “medium” or “high”; the severity,
on the other hand, is “non-critical” for 7 of the reports and
either “serious” or “critical” for the others. This suggests
that even users who take the time to report faults only do so
for faults that they consider important enough.

As we could not perform the study with professional
testers, we used bachelor and master students of Computer
Science who were motivated with the prices of the compe-
tition to find as many faults as possible. In a questionnaire
they filled in after the competition, 4 of the students de-
clared themselves to be proficient programmers and 9 esti-
mated they had “basic programming experience.” 7 of them
stated that they had worked on software projects with more
than 10,000 lines of code and the others had only worked on
smaller projects. Furthermore, as mentioned in §4.1, two of
the classes under test given to the students were written by
one of the authors, who also introduced the faults in them.
These faults were meant to be representative of actual faults
occurring in real software, so they were created as instances
of various categories described in §3, but naturally the fact
that they were seeded in code written by one of the authors
introduces a bias in the results. All these aspects limit the
generality of our conclusions.

A further threat to the generalization of our results stems
from the peculiarities of the random testing tool used. Au-
toTest implements one particular algorithm for random test-
ing and the results described here would probably not be
identical for other approaches to the random testing of OO
programs (e.g., [13]). In particular, we make use of extreme
values to initialize the object pool (§2). While void objects
are rather likely to occur in practice, extreme integer values
are not. In other words, as mentioned earlier, the approach
is not entirely “random.”

As noted, compile-time removal of void-related errors
will affect the results, for Eiffel and other languages that
have the equivalent of an “attached type” mechanism (for
instance Spec# [4]).

Another source of uncertainty is the assignment of de-
fects to a classification. Finding a consistent assignment
among several experts is difficult [25]. In our study, one
person was assigned to this task. We hence believe that we

have consistent results. Nevertheless, a similar experiment
with a different person might exhibit different results.

Finally, the programming language used in the study,
Eiffel, also influenced the results. As explained in §4.5, a
few of the fault categories stem from the language mecha-
nisms that are mis-used or that allow the fault to occur. This
is to be expected in a classification of software faults based
on the cause of the faults.

5 Related work

Many fault classification models have been proposed in
the past [10, 1, 30, 21, 6, 35]. This includes the Orthogo-
nal Defect Classification (ODC) [10] whose main point is
to combine two different classifications, defect types and
defect triggers. In a sense our classification is an ODC in
itself but our classification of defect types is finer while the
defect location is simpler than defect triggers. The IEEE
classification [1] aims at building a framework for a com-
plete characterization of the defect. It defines 79 hierar-
chically organized types that are sufficient to understand
any defect. In our case using such categories would not
have helped because they do not reflect the particular con-
structs of contract-enabled languages. Lutz [30] describes
a safety checklist that defines categories of possible er-
rors in safety-critical embedded systems. The classification
probably most similar to ours is the one used by Basili et
al. [5, 28, 39], organized in two dimensions: whether the
fault is an omission or a commission fault, and to which
of 6 possible types it belongs. Our classification takes into
account specifications (contracts) and is more fine-grained.

Bug patterns (e.g., [2, 26]) are also related to our work.
Allen [2] defined 14 types of defects in Java programs. Our
approach has to cope with different constructs and thus de-
fines categories adapted to Eiffel programs, taking into ac-
count contracts and multiple inheritance.

Several studies compare different testing strategies by
evaluating their respective failure-triggering capabilities.
Random tests have been compared to partition testing both
theoretically and empirically [22, 38, 15, 23], and the effec-
tiveness of model-based testing has been studied [36, 24, 7].
These studies do not take into consideration a classification
of faults which, among other things, led us to conduct the
experiment presented here.

Numerous other studies have compared structural and
functional testing strategies as well as code reading (among
others, [18, 5, 28, 39]). None of these studies compares
manual testing to automated techniques. Our study com-
pares random testing+ with manual testing and user bug re-
ports; as far as we know, this is the first time that these three
methods of identifying software faults are correlated. Like
most of the earlier comparative studies, the results highlight
the complementarity of different techniques.

6 Conclusions

One of the main goals of this work is to understand
if different ways of detecting faults detect different kinds
of faults. The question is of high practical importance:
which testing strategy should be applied under which cir-
cumstances? A further motivation was the conjecture that a
reason for the inconclusiveness of earlier comparative stud-
ies is that the number of detected faults alone is too strong
an abstraction for comparing testing strategies.

More specifically, in this paper we examined the kind of
faults that random testing+ finds, and the question whether
and how these differ from faults found by human testers and
by users of the software. The experiments presented here
suggest that these three strategies for finding software faults
have different strengths and applicability. None of them
subsumes any other in terms of performance. Random test-
ing+ with AutoTest has the advantage of being completely
automatic. The experiments presented here as well as in
earlier work [11, 12] show that the tool indeed finds a high
number of faults in little time. Humans, however, find faults
that AutoTest misses. This is shown both by the examined
user bug reports and by asking testers to test some code on
which AutoTest was run, and by subsequently comparing
the results. This latter experiment also proved that AutoTest
finds faults that testers miss. The conclusion is that random
tests+ should be used alongside with manual tests. Given
earlier results on comparing different QA strategies, this
is not surprising, but we are not aware of any systematic
studies that showed this for random testing. We discussed
threats to generalizing these results in §4.6.

The results of research into randomly testing Eiffel pro-
grams can also be used for investigating the benefits of us-
ing contracts and how contracts can be improved, possi-
bly based on specification patterns. Future work in this
direction will require performing more experiments of the
kind presented in this paper, adjusting the classification,
and comparing concrete testing strategies such as partition-
based testing or testing based on usage profiles rather than
the — admittedly underspecified — “manual testing strategy.”

Our analysis is based on a classification of faults that is
not specific to one particular application domain. In terms
of specification faults, it caters to typical problems with pre-
and postconditions and invariants that are too weak, e.g.,
do not take into account extreme values, or are too strong.
In terms of implementation faults, there are a few general
problems such as missing cases or infinite loops, and some
problems that relate to the idiosyncrasies of the Eiffel lan-
guage. We do not claim that our classification is complete or
the only possible one; it is the result of analyzing the faults
that we encountered. We believe that this classification, or
some variant of it, can be used for future experiments on
comparing strategies for finding faults.

Acknowledgments. We thank Raluca Borca, on whose work
a large part of the study of random testing is based. We are also
thankful to Andreas Leitner for numerous discussions and insight-
ful observations on this work.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(7]

(18]
(19]

[20]

IEEE standard classification for software anomalies. /EEE

Std 1044-1993, 2 Jun 1994.
E. Allen. Bug Patterns in Java. APress L. P., 2002.
S. Artzi, M. Ernst, K. A, C. Pacheco, and J. Perkins. Finding

the needles in the haystack: Generating legal test inputs for
object-oriented programs. In Proc. 1st Workshop on Model-

Based Testing and Object-Oriented Systems, 2006.
M. Barnett, K. R. M. Leino, and W. Schulte. The spec# pro-

gramming system: An overview. In Proc. CASSIS, 2004.

Springer LNCS 3362.
V. Basili and R. Selby. Comparing the effectiveness of soft-

ware testing strategies. [EEE TSE, 13(12):1278-1296, 1987.
B. Beizer. Software Testing Techniques. John Wiley & Sons,

Inc., New York, NY, USA, 1990.
E. Bernard, B. Legeard, X. Luck, and F. Peureux. Gen-

eration of test sequences from formal specifications: GSM
11-11 standard case study. Software-Practice & Experience,

34(10):915-948, August 2004.
C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated

testing based on Java predicates. In Proc. Intl. Symp. on Soft-

ware Testing and Analysis, pages 123—-133, 2002.
P. Chalin. Are practitioners writing contracts? In Springer

LNCS 4157, pages 100-113, 2006.
R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus,

B. Ray, and M.-Y. Wong. Orthogonal defect classification-
a concept for in-process measurements. IEEE TSE,

18(11):943-956, 1992.
L. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental

assessment of random testing for object-oriented software.

In Proc. ISSTA, pages 84-94, 2007.
L. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer.

On the predictability of random tests for object-oriented soft-

ware. In Proc. ICST, pages 72-81, 2008.
C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-

bustness tester for Java. Software: Practice and Experience,

34(11):1025-1050, 2004.
C. Csallner and Y. Smaragdakis. DSD-Crasher: A Hybrid

Analysis Tool for Bug Finding. In Proc. Intl. Symp. on Soft-

ware Testing and Analysis, pages 245-254, July 2006.
J. Duran and S. Ntafos. An Evaluation of Random Testing.

IEEE TSE, SE-10(4):438—444, July 1984.
M. D. Ernst. Dynamically Discovering Likely Program In-

variants. PhD thesis, University of Washington Department

of Computer Science and Engineering, August 2000.
P. Frankl and S. Weiss. An Experimental Comparison of

the Effectiveness of Branch Testing and Data Flow Testing.

IEEE TSE, 19(8):774-787, 1993.
P. Frankl, S. Weiss, and C. Hu. All-uses versus mutation

testing: An experimental comparison of effectiveness, 1994.
P. Frankl and E. Weyuker. An Applicable Family of Data

Flow Testing Criteria. /EEE TSE, 14(10):1483-1498, 1998.
M. Girgis and M. Woodward. An experimental comparison

of the error exposing ability of program testing criteria. In
Proc. IEEE/ACM workshop on software testing, pages 64—
73, July 1986.

10

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

J. Gray. Why do computers stop and what can be done about
it? In Symposium on Reliability in Distributed Software and

Database Systems, pages 3—12, 1986.
W. Gutjahr. Partition testing versus random testing: the in-

fluence of uncertainty. /[EEE TSE, 25(5):661-674, 1999.
D. Hamlet and R. Taylor. Partition Testing Does Not Inspire

Confidence. IEEE TSE, 16(12):1402—-1411, Dec. 1990.
M. Heimdahl, D. George, and R. Weber. Specification Test

Coverage Adequacy Criteria = Specification Test Generation
Inadequacy Criteria? In Proc. 8th IEEE High Assurance in

Systems Engineering Workshop, February 2004.
K. Henningsson and C. Wohlin. Assuring fault classification

agreement — an empirical evaluation. In Proc. Intl. Symp. on
Empirical Software Engineering, pages 95-104, 2004.

D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92-106, 2004.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-
periments of the effectiveness of dataflow- and controlflow-
based test adequacy criteria. In Proc. ICSE, pages 191-200,

1994.
E. Kamsties and C. Lott. An empirical evaluation of three

defect-detection techniques. In Proc. ESEC, pages 362-383,

1995.
A. Leitner and I. Ciupa. AutoTest.

ethz.ch/people/leitner/auto_test/,

2007.
R. Lutz. Targeting Safety-Related Errors During Software

Requirements Analysis. In Proc. ACM SIGSOFT FSE, pages

99-106, 1993.
B. Meyer. Attached types and their application to three open

problems of object-oriented programming. In Proc. ECOOP,

pages 1-32, 2005. Springer LNCS 3586.
C. Oriat. Jartege: a tool for random generation of unit tests

for java classes. Technical Report RR-1069-1, CNRS, Uni-

versite Joseph Fourier Grenoble I, June 2004.
C. Pacheco and M. D. Ernst. Eclat: Automatic generation

and classification of test inputs. In Proc. ECOOP, pages

504-527, 2005.
C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-

directed random test generation. In Proc. ICSE, pages 7584,

2007.
J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring.

Research issues in software fault categorization. SIGSOFT
Softw. Eng. Notes, 32(6):6, 2007.

A. Pretschner, W. Prenninger, S. Wagner, C. Kiihnel,
M. Baumgartner, B. Sostawa, R. Zolch, and T. Stauner. One
evaluation of model-based testing and its automation. In

Proc. ICSE, pages 392401, 2005.
M. Utting, A. Pretschner, and B. Legeard. A taxonomy

of model-based testing. Technical Report 04/2006, Depart-
ment of Computer Science, The University of Waikato (New

Zealand), April 2006.
E. Weyuker and B. Jeng. Analyzing Partition Testing Strate-

gies. IEEE TSE, 17(7):703-711, 1991.
M. Wood, M. Roper, A. Brooks, and J. Miller. Compar-

ing and combining software defect detection techniques: a
replicated empirical study. SIGSOFT Softw. Eng. Notes,
22(6):262-277, 1997.

http://se.inf.
2005 -

