Showing 2 open source projects for "corruption"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Flow Matching

    Flow Matching

    A PyTorch library for implementing flow matching algorithms

    ...The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative training. The library supports both continuous-time flows (via differential equations) and discrete-time analogues, giving flexibility in design and tradeoffs. It provides examples across modalities (images, toy 2D distributions) to help users understand how to apply flow matching in practice. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    bart-large-cnn

    bart-large-cnn

    Summarization model fine-tuned on CNN/DailyMail articles

    facebook/bart-large-cnn is a large-scale sequence-to-sequence transformer model developed by Meta AI and fine-tuned specifically for abstractive text summarization. It uses the BART architecture, which combines a bidirectional encoder (like BERT) with an autoregressive decoder (like GPT). Pre-trained on corrupted text reconstruction, the model was further trained on the CNN/DailyMail dataset—a collection of news articles paired with human-written summaries. It performs particularly well in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next