Showing 8 open source projects for "finite volume methods"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    VoronoiFVM.jl

    VoronoiFVM.jl

    Solution of nonlinear multiphysics partial differential equations

    Solver for coupled nonlinear partial differential equations (elliptic-parabolic conservation laws) based on the Voronoi finite volume method. It uses automatic differentiation via ForwardDiff.jl and DiffResults.jl to evaluate user functions along with their jacobians and calculate derivatives of solutions with respect to their parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Calculus.jl

    Calculus.jl

    Calculus functions in Julia

    The Calculus package provides tools for working with the basic calculus operations of differentiation and integration. You can use the Calculus package to produce approximate derivatives by several forms of finite differencing or to produce exact derivatives using symbolic differentiation. You can also compute definite integrals by different numerical methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    FiniteDifferences.jl

    FiniteDifferences.jl

    High accuracy derivatives, estimated via numerical finite differences

    FiniteDifferences.jl estimates derivatives with finite differences. See also the Python package FDM. FiniteDiff.jl and FiniteDifferences.jl are similar libraries: both calculate approximate derivatives numerically. You should definitely use one or the other, rather than the legacy Calculus.jl finite differencing, or reimplementing it yourself. At some point in the future, they might merge, or one might depend on the other.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AbstractGPs.jl

    AbstractGPs.jl

    Abstract types and methods for Gaussian Processes

    AbstractGPs.jl is a package that defines a low-level API for working with Gaussian processes (GPs), and basic functionality for working with them in the simplest cases. As such it is aimed more at developers and researchers who are interested in using it as a building block than end-users of GPs. You may want to go through the main API design documentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Turn traffic into pipeline and prospects into customers Icon
    Turn traffic into pipeline and prospects into customers

    For account executives and sales engineers looking for a solution to manage their insights and sales data

    Docket is an AI-powered sales enablement platform designed to unify go-to-market (GTM) data through its proprietary Sales Knowledge Lake™ and activate it with intelligent AI agents. The platform helps marketing teams increase pipeline generation by 15% by engaging website visitors in human-like conversations and qualifying leads. For sales teams, Docket improves seller efficiency by 33% by providing instant product knowledge, retrieving collateral, and creating personalized documents. Built for GTM teams, Docket integrates with over 100 tools across the revenue tech stack and offers enterprise-grade security with SOC 2 Type II, GDPR, and ISO 27001 compliance. Customers report improved win rates, shorter sales cycles, and dramatically reduced response times. Docket’s scalable, accurate, and fast AI agents deliver reliable answers with confidence scores, empowering teams to close deals faster.
    Learn More
  • 5
    Oceananigans.jl

    Oceananigans.jl

    Julia software for fast, friendly, flexible fluid dynamics on CPUs

    Oceananigans is a fast, friendly, flexible software package for finite volume simulations of the nonhydrostatic and hydrostatic Boussinesq equations on CPUs and GPUs. It runs on GPUs (wow, fast!), though we believe Oceananigans makes the biggest waves with its ultra-flexible user interface that makes simple simulations easy, and complex, creative simulations possible.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    101-0250-00

    101-0250-00

    ETH course - Solving PDEs in parallel on GPUs

    This course aims to cover state-of-the-art methods in modern parallel Graphical Processing Unit (GPU) computing, supercomputing and code development with applications to natural sciences and engineering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Gridap.jl

    Gridap.jl

    Grid-based approximation of partial differential equations in Julia

    Gridap provides a set of tools for the grid-based approximation of partial differential equations (PDEs) written in the Julia programming language. The library currently supports linear and nonlinear PDE systems for scalar and vector fields, single and multi-field problems, conforming and nonconforming finite element (FE) discretizations, on structured and unstructured meshes of simplices and n-cubes. It also provides methods for time integration. Gridap is extensible and modular. One can implement new FE spaces, new reference elements, use external mesh generators, linear solvers, post-processing tools, etc. See, e.g., the list of available Gridap plugins.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ForwardDiff.jl

    ForwardDiff.jl

    Forward Mode Automatic Differentiation for Julia

    ForwardDiff implements methods to take derivatives, gradients, Jacobians, Hessians, and higher-order derivatives of native Julia functions (or any callable object, really) using forward mode automatic differentiation (AD). While performance can vary depending on the functions you evaluate, the algorithms implemented by ForwardDiff generally outperform non-AD algorithms (such as finite-differencing) in both speed and accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next