Open Source Python Machine Learning Software

Python Machine Learning Software

View 439 business solutions

Browse free open source Python Machine Learning Software and projects below. Use the toggles on the left to filter open source Python Machine Learning Software by OS, license, language, programming language, and project status.

  • Auth for GenAI | Auth0 Icon
    Auth for GenAI | Auth0

    Enable AI agents to securely access tools, workflows, and data with fine-grained control and just a few lines of code.

    Easily implement secure login experiences for AI Agents - from interactive chatbots to background workers with Auth0. Auth for GenAI is now available in Developer Preview
    Try free now
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 1
    DeepFaceLive

    DeepFaceLive

    Real-time face swap for PC streaming or video calls

    You can swap your face from a webcam or the face in the video using trained face models. There is also a Face Animator module in DeepFaceLive app. You can control a static face picture using video or your own face from the camera. The quality is not the best, and requires fine face matching and tuning parameters for every face pair, but enough for funny videos and memes or real-time streaming at 25 fps using 35 TFLOPS GPU.
    Downloads: 355 This Week
    Last Update:
    See Project
  • 2
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an expert. Students love YOLOv5 for its simplicity and there are many quickstart examples for you to get started within seconds. Export and deploy your YOLOv5 model with just 1 line of code. There are also loads of quickstart guides and tutorials available to get your model where it needs to be. Create state of the art deep learning models with YOLOv5
    Downloads: 316 This Week
    Last Update:
    See Project
  • 3
    DeepMosaics

    DeepMosaics

    Automatically remove the mosaics in images and videos, or add mosaics

    Automatically remove the mosaics in images and videos, or add mosaics to them. This project is based on "semantic segmentation" and "Image-to-Image Translation". You can either run DeepMosaics via a pre-built binary package, or from source. Run time depends on the computer's performance (GPU version has better performance but requires CUDA to be installed). Different pre-trained models are suitable for different effects.[Introduction to pre-trained models].
    Downloads: 125 This Week
    Last Update:
    See Project
  • 4
    YOLOv5

    YOLOv5

    YOLOv5 is the world's most loved vision AI

    Introducing Ultralytics YOLOv8, the latest version of the acclaimed real-time object detection and image segmentation model. YOLOv8 is built on cutting-edge advancements in deep learning and computer vision, offering unparalleled performance in terms of speed and accuracy. Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs. Explore the YOLOv8 Docs, a comprehensive resource designed to help you understand and utilize its features and capabilities. Whether you are a seasoned machine learning practitioner or new to the field, this hub aims to maximize YOLOv8's potential in your projects.
    Downloads: 111 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing a Practical Algorithm for Real-world Face Restoration. It leverages rich and diverse priors encapsulated in a pretrained face GAN (e.g., StyleGAN2) for blind face restoration. Add V1.3 model, which produces more natural restoration results, and better results on very low-quality / high-quality inputs.
    Downloads: 101 This Week
    Last Update:
    See Project
  • 6
    Video-subtitle-extractor

    Video-subtitle-extractor

    A GUI tool for extracting hard-coded subtitle (hardsub) from videos

    Video hard subtitle extraction, generate srt file. There is no need to apply for a third-party API, and text recognition can be implemented locally. A deep learning-based video subtitle extraction framework, including subtitle region detection and subtitle content extraction. A GUI tool for extracting hard-coded subtitles (hardsub) from videos and generating srt files. Use local OCR recognition, no need to set up and call any API, and do not need to access online OCR services such as Baidu and Ali to complete text recognition locally. Support GPU acceleration, after GPU acceleration, you can get higher accuracy and faster extraction speed. (CLI version) No need for users to manually set the subtitle area, the project automatically detects the subtitle area through the text detection model. Filter the text in the non-subtitle area and remove the watermark (station logo) text.
    Downloads: 60 This Week
    Last Update:
    See Project
  • 7
    POT

    POT

    Python Optimal Transport

    This open source Python library provides several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.
    Downloads: 48 This Week
    Last Update:
    See Project
  • 8
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    Originally developed by Google for internal use, TensorFlow is an open source platform for machine learning. Available across all common operating systems (desktop, server and mobile), TensorFlow provides stable APIs for Python and C as well as APIs that are not guaranteed to be backwards compatible or are 3rd party for a variety of other languages. The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. Tensorflow can also be used for research and production with TensorFlow Extended.
    Downloads: 37 This Week
    Last Update:
    See Project
  • 9
    EasyOCR

    EasyOCR

    Ready-to-use OCR with 80+ supported languages

    Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. EasyOCR is a python module for extracting text from image. It is a general OCR that can read both natural scene text and dense text in document. We are currently supporting 80+ languages and expanding. Second-generation models: multiple times smaller size, multiple times faster inference, additional characters and comparable accuracy to the first generation models. EasyOCR will choose the latest model by default but you can also specify which model to use. Model weights for the chosen language will be automatically downloaded or you can download them manually from the model hub. The idea is to be able to plug-in any state-of-the-art model into EasyOCR. There are a lot of geniuses trying to make better detection/recognition models, but we are not trying to be geniuses here. We just want to make their works quickly accessible to the public.
    Downloads: 29 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Basic Pitch

    Basic Pitch

    A lightweight audio-to-MIDI converter with pitch bend detection

    Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence Lab. It's small, easy-to-use, pip install-able and npm install-able via its sibling repo. Basic Pitch may be simple, but it's is far from "basic"! basic-pitch is efficient and easy to use, and its multi pitch support, its ability to generalize across instruments, and its note accuracy compete with much larger and more resource-hungry AMT systems. Provide a compatible audio file and a basic-pitch will generate a MIDI file, complete with pitch bends. The basic pitch is instrument-agnostic and supports polyphonic instruments, so you can freely enjoy transcription of all your favorite music, no matter what instrument is used. Basic pitch works best on one instrument at a time.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 11
    RAGFlow

    RAGFlow

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 12
    YOLOX

    YOLOX

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. Prepare your own dataset with images and labels first. For labeling images, you can use tools like Labelme or CVAT. One more thing worth noting is that you should also implement pull_item and load_anno method for the Mosiac and MixUp augmentations. Except special cases, we always recommend using our COCO pre-trained weights for initializing the model. As YOLOX is an anchor-free detector with only several hyper-parameters, most of the time good results can be obtained with no changes to the models or training settings.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 13
    KoboldAI

    KoboldAI

    Your gateway to GPT writing

    This is a browser-based front-end for AI-assisted writing with multiple local & remote AI models. It offers the standard array of tools, including Memory, Author's Note, World Info, Save & Load, adjustable AI settings, formatting options, and the ability to import existing AI Dungeon adventures. You can also turn on Adventure mode and play the game like AI Dungeon Unleashed. Stories can be played like a Novel, a text adventure game or used as a chatbot with an easy toggles to change between the multiple gameplay styles. This makes KoboldAI both a writing assistant, a game and a platform for so much more. The way you play and how good the AI will be depends on the model or service you decide to use. No matter if you want to use the free, fast power of Google Colab, your own high end graphics card, an online service you have an API key for (Like OpenAI or Inferkit) or if you rather just run it slower on your CPU you will be able to find a way to use KoboldAI that works for you.
    Leader badge
    Downloads: 485 This Week
    Last Update:
    See Project
  • 14
    Gradio

    Gradio

    Create UIs for your machine learning model in Python in 3 minutes

    Gradio is the fastest way to demo your machine learning model with a friendly web interface so that anyone can use it, anywhere! Gradio can be installed with pip. Creating a Gradio interface only requires adding a couple lines of code to your project. You can choose from a variety of interface types to interface your function. Gradio can be embedded in Python notebooks or presented as a webpage. A Gradio interface can automatically generate a public link you can share with colleagues that lets them interact with the model on your computer remotely from their own devices. Once you've created an interface, you can permanently host it on Hugging Face. Hugging Face Spaces will host the interface on its servers and provide you with a link you can share. One of the best ways to share your machine learning model, API, or data science workflow with others is to create an interactive demo that allows your users or colleagues to try out the demo in their browsers.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 15
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. The SageMaker Training Toolkit can be easily added to any Docker container, making it compatible with SageMaker for training models. If you use a prebuilt SageMaker Docker image for training, this library may already be included. Write a training script (eg. train.py). Define a container with a Dockerfile that includes the training script and any dependencies.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 16
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Detect objects on image, bboxes, polygons, circular, and keypoints supported. Partition image into multiple segments. Use ML models to pre-label and optimize the process. Label Studio is an open-source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models. The frontend part of Label Studio app lies in the frontend/ folder and written in React JSX. Multi-user labeling sign up and login, when you create an annotation it's tied to your account. Configurable label formats let you customize the visual interface to meet your specific labeling needs. Support for multiple data types including images, audio, text, HTML, time-series, and video.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 17

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a folder of images from the command line. It could even do real-time face recognition and blur faces on videos when used with other Python libraries.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 18
    huggingface_hub

    huggingface_hub

    The official Python client for the Huggingface Hub

    The huggingface_hub library allows you to interact with the Hugging Face Hub, a platform democratizing open-source Machine Learning for creators and collaborators. Discover pre-trained models and datasets for your projects or play with the thousands of machine-learning apps hosted on the Hub. You can also create and share your own models, datasets, and demos with the community. The huggingface_hub library provides a simple way to do all these things with Python.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 19
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 20
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths. In order for a human to have a meaningful exchange with a contextual assistant, the assistant needs to be able to use context to build on things that were previously discussed. Rasa enables you to build assistants that can do this in a scalable way. Rasa uses Poetry for packaging and dependency management. If you want to build it from the source, you have to install Poetry first. By default, Poetry will try to use the currently activated Python version to create the virtual environment for the current project automatically.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 21
    spaCy models

    spaCy models

    Models for the spaCy Natural Language Processing (NLP) library

    spaCy is designed to help you do real work, to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry standard with a huge ecosystem. Choose from a variety of plugins, integrate with your machine learning stack and build custom components and workflows.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 22
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    Super fast and high accuracy lightweight anchor-free object detection model. Real-time on mobile devices. NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. There is also an Android demo based on ncnn library. Supports various backends including ncnn, MNN and OpenVINO. Also provide Android demo based on ncnn inference framework.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 23
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware accelerators. Quantized inference is significantly faster than floating point inference. For example, models that we’ve run on the Qualcomm® Hexagon™ DSP rather than on the Qualcomm® Kryo™ CPU have resulted in a 5x to 15x speedup. Plus, an 8-bit model also has a 4x smaller memory footprint relative to a 32-bit model. However, often when quantizing a machine learning model (e.g., from 32-bit floating point to an 8-bit fixed point value), the model accuracy is sacrificed.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 24
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment. However, distributed training, especially model parallelism, often requires domain expertise in computer systems and architecture. It remains a challenge for AI researchers to implement complex distributed training solutions for their models. Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 25
    MindsDB

    MindsDB

    Making Enterprise Data Intelligent and Responsive for AI

    MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making capabilities. A federated query engine that tidies up your data-sprawl chaos while meticulously answering every single question you throw at it. MindsDB has an MCP server built in that enables your MCP applications to connect, unify and respond to questions over large-scale federated data—spanning databases, data warehouses, and SaaS applications.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.