Open Source C++ Sentiment Analysis Software

C++ Sentiment Analysis Software

View 10752 business solutions

Browse free open source C++ Sentiment Analysis Software and projects below. Use the toggles on the left to filter open source C++ Sentiment Analysis Software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 1
    fastText

    fastText

    Library for fast text classification and representation

    FastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. ext classification is a core problem to many applications, like spam detection, sentiment analysis or smart replies. In this tutorial, we describe how to build a text classifier with the fastText tool. The goal of text classification is to assign documents (such as emails, posts, text messages, product reviews, etc...) to one or multiple categories. Such categories can be review scores, spam v.s. non-spam, or the language in which the document was typed. Nowadays, the dominant approach to build such classifiers is machine learning, that is learning classification rules from examples. In order to build such classifiers, we need labeled data, which consists of documents and their corresponding categories (or tags, or labels).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Phrasal

    Phrasal

    Statistical phrase-based machine translation system

    Stanford Phrasal is a state-of-the-art statistical phrase-based machine translation system, written in Java. At its core, it provides much the same functionality as the core of Moses. Distinctive features include: providing an easy to use API for implementing new decoding model features, the ability to translating using phrases that include gaps (Galley et al. 2010), and conditional extraction of phrase-tables and lexical reordering models. Developed by The Natural Language Processing Group at Stanford University, a team of faculty, postdocs, programmers and students who work together on algorithms that allow computers to process and understand human languages. Our work ranges from basic research in computational linguistics to key applications in human language technology, and covers areas such as sentence understanding, automatic question answering, machine translation, syntactic parsing and tagging, sentiment analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.