Menu

[r12]: / trunk / libtop_engine / rule_propagation.h  Maximize  Restore  History

Download this file

281 lines (220 with data), 8.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#ifndef RULE_PROPAGATION_H_
#define RULE_PROPAGATION_H_
#include "rdf_rule_core.h"
#include "rdf_session.h"
#include "rule_internal.h"
#include "rule_session.h"
#include "rule_term_base.h"
#include "knowledge_base.h"
namespace rule {
namespace internal {
/////////////////////////////////////////////////////////////////////////////////////////
// class apply_rule_action
//
/////////////////////////////////////////////////////////////////////////////////////////
struct apply_rule_action
{
inline apply_rule_action(knowledge_base const* kbase_p):
m_kbase_p(kbase_p)
{};
inline ~apply_rule_action(){};
inline bool terminate(rule_session * session_p, rule_vertex const v)const
{
beta_relation const& b = session_p->get_beta_relation(v);
if(!b.is_consequent_term() and b.is_propagation_qx_empty()) return true;
return false;
};
inline void operator()(rule_session * session_p, rule_vertex u, rule_vertex v)const
{
beta_relation& left_relation = session_p->get_beta_relation(u);
beta_relation& relation = session_p->get_beta_relation(v);
knowledge_term const& kterm = m_kbase_p->get_knowledge_term(v);
internal::rule_term_ptr_type const& rule_term = kterm.get_rule_term();
// this is needed for merge_row and retract_row
// not used for first time rule executon.
relation.reset_propagation_qx();
bool need_all_rows = !relation.has_fired();
beta_relation::const_iterator left_relation_itor = left_relation.propagation_qx_rows_iterator(need_all_rows);
// //*
// if(session_p->is_verbose()) {
// std::cout << "\n>>>apply_rule_action: [" << m_kbase_p->get_knowledge_term(u).get_name()
// << "] --> ["
// << m_kbase_p->get_knowledge_term(v).get_name()
// << "]\n";
// }
unsigned int count = 0;
try {
count = rule_term->compute_rows(session_p, left_relation_itor, relation);
} catch(rdf::rdf_exception const& e) {
std::cout << "apply_rule_action: Exception caught: " << e << std::endl;
std::cout << "while processing rule terms " << kterm.get_name() << std::endl;
throw e;
}
}
private:
knowledge_base const* m_kbase_p;
};
/////////////////////////////////////////////////////////////////////////////////////////
// class retract_rule_action
//
/////////////////////////////////////////////////////////////////////////////////////////
struct retract_rule_action
{
inline retract_rule_action(knowledge_base const* kbase_p):
m_kbase_p(kbase_p)
{};
inline ~retract_rule_action(){};
inline bool terminate(rule_session * session_p, rule_vertex const v)const
{
beta_relation const& b = session_p->get_beta_relation(v);
if(!b.is_consequent_term() and b.is_propagation_qx_empty()) return true;
return false;
};
inline void operator()(rule_session * session_p, rule_vertex u, rule_vertex v)const
{
beta_relation& left_relation = session_p->get_beta_relation(u);
beta_relation::const_iterator left_relation_itor = left_relation.propagation_qx_rows_iterator(false);
beta_relation& relation = session_p->get_beta_relation(v);
knowledge_term const& kterm = m_kbase_p->get_knowledge_term(v);
internal::rule_term_ptr_type const& rule_term = kterm.get_rule_term();
relation.reset_propagation_qx();
// //*
// if(session_p->is_verbose()) {
// std::cout << "\n>>>retract_rule_action: [" << m_kbase_p->get_knowledge_term(u).get_name()
// << "] --> ["
// << m_kbase_p->get_knowledge_term(v).get_name()
// << "]\n";
// }
unsigned int count = 0;
try {
count = rule_term->retract_rows(session_p, left_relation_itor, relation);
} catch(rdf::rdf_exception const& e) {
std::cout << "retract_rule_action: Exception caught: " << e << std::endl;
std::cout << "while processing rule terms " << kterm.get_name() << std::endl;
throw e;
}
}
private:
knowledge_base const* m_kbase_p;
};
/////////////////////////////////////////////////////////////////////////////////////////
// class rule_propagator
//
// functor to perform DFS - propagate rule on the rule graph
/////////////////////////////////////////////////////////////////////////////////////////
template<class Action>
class rule_propagator
{
public:
rule_propagator(knowledge_base const* kbase_p, Action const& action):
m_kbase_p(kbase_p),
m_action(action)
{};
~rule_propagator(){};
inline bool keep_vertex(rule_session * session_p, rule_vertex const v)const
{
if(m_kbase_p->get_knowledge_term(v).get_knowledge_rule().get_rule_type() != backward_chaining_rule) return true;
// //*
// if(session_p->is_verbose()) {
// std::cout << "\tkeep_vertex: '" << m_kbase_p->get_knowledge_term(v).get_name()
// << "' is a backward chaining rule, do not propagate forward beyond this node." << std::endl;
// }
return false;
};
inline bool terminate(rule_session * session_p, rule_vertex const v)const
{
if(m_action.terminate(session_p, v)) {
// //*
// if(session_p->is_verbose()) {
// std::cout << "\trule_propagator::terminate: terminate propagation at node: "
// << m_kbase_p->get_knowledge_term(v).get_name() << std::endl;
// }
return true;
}
return false;
};
inline void operator()(rule_session * session_p, rule_vertex const from_vertex)const
{
typedef rule_graph_type::adjacency_iterator iter_t;
typedef std::pair<iter_t, iter_t> iter_pair_t;
typedef std::pair<rule_vertex, iter_pair_t > stack_elm;
if(terminate(session_p, from_vertex)) return;
rule_graph_type const graph = m_kbase_p->get_rule_graph();
std::vector<stack_elm> stack;
stack.reserve(m_kbase_p->get_nbr_vertices());
iter_pair_t iter_pair = boost::adjacent_vertices(from_vertex, graph);
stack.push_back(stack_elm(from_vertex, iter_pair));
while(!stack.empty()) {
stack_elm & elm = stack.back();
rule_vertex u = elm.first;
iter_t itor = elm.second.first;
iter_t end = elm.second.second;
stack.pop_back();
for(; itor!=end; ++itor) {
rule_vertex v = *itor;
m_action(session_p, u, v);
session_p->get_beta_relation(v).set_has_fired(true);
if(keep_vertex(session_p, v) and !terminate(session_p, v)) {
stack.push_back(stack_elm(v, boost::adjacent_vertices(v, graph)));
}
}
}
};
private:
knowledge_base const* m_kbase_p;
Action m_action;
};
/////////////////////////////////////////////////////////////////////////////////////////
// class single_rule_propagator
//
// propagate rule along a single rule path in the rule graph
/////////////////////////////////////////////////////////////////////////////////////////
template<class Action>
class single_rule_propagator
{
public:
single_rule_propagator(knowledge_base const* kbase_p, Action const& action):
m_kbase_p(kbase_p),
m_action(action)
{};
~single_rule_propagator(){};
inline bool terminate(rule_session * session_p, rule_vertex const v)const
{
if(m_action.terminate(session_p, v)) {
// //*
// if(session_p->is_verbose()) {
// std::cout << "\tsingle_rule_propagator::terminate: terminate propagation at node: "
// << m_kbase_p->get_knowledge_term(v).get_name() << std::endl;
// }
return true;
}
return false;
};
inline void operator()(rule_session * session_p, rule_vertex const rule_vertex)const
{
knowledge_rule const& rule = m_kbase_p->get_knowledge_rule(rule_vertex);
knowledge_rule::rule_vertex_const_iterator itor = rule.get_body_term_vertices_begin();
internal::rule_vertex parent = *itor;
knowledge_rule::rule_vertex_const_iterator end = rule.get_body_term_vertices_end();
// first node is graph head vertex
++itor;
if(itor == end) throw rdf::rdf_exception(rdf::unexpected_logic_error, "ERROR: single_rule_propagator: Rule contains no body terms!");
// advance to the first node that has not fired yet.
while(itor!=end and session_p->get_beta_relation(*itor).has_fired()) {
parent = *itor;
++itor;
}
for(; itor!=end; ++itor) {
m_action(session_p, parent, *itor);
session_p->get_beta_relation(*itor).set_has_fired(true);
parent = *itor;
if(terminate(session_p, *itor)) return;
}
};
private:
knowledge_base const* m_kbase_p;
Action m_action;
};
}; /* internal namespace */
}; /* rule namespace */
#endif /*RULE_PROPAGATION_H_*/
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.