Menu

[r3]: / libtop_engine / rule_session.cpp  Maximize  Restore  History

Download this file

751 lines (558 with data), 27.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
#include "rule_session.h"
#include "rule_term_base.h"
#include "rule_term.h"
#include "query_rule_wrapper.h"
#include "rule_propagation.h"
#include "rule_explain_why.h"
#include "psearch_session.h"
namespace rule {
/////////////////////////////////////////////////////////////////////////////////////////
// get_backward_chaining_rule_name
//
/////////////////////////////////////////////////////////////////////////////////////////
std::string
get_backward_chaining_rule_name(knowledge_base const& kbase, internal::rule_vertex const root_vertex)
{
knowledge_rule_ptr_type p = kbase.get_knowledge_rule_ptr(root_vertex);
if(!p) return "ERROR: expecting rule in rule dependency graph at "+boost::lexical_cast<std::string>(root_vertex);
return p->get_rule_name();
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::rule_session
//
/////////////////////////////////////////////////////////////////////////////////////////
rule_session::rule_session(
rdf::rdf_session *session_p,
knowledge_base const& kbase):
m_relations(kbase.get_nbr_vertices()),
m_visited_consequents(),
m_rule_counter_map(kbase.get_nbr_vertices()),
m_is_log_rule_events(false),
m_rule_log(),
m_explain_lookup_map(),
m_rdf_session_p(session_p),
m_reasoners_pkg_scheduled(50),
m_reasoners_scheduled(50),
m_reasoners_executed(50),
m_owl_onProperty(),
m_owl_maxCardinality(),
m_owl_minCardinality(),
m_owl_cardinality(),
m_owl_sameAs(),
m_owl_true(),
m_owl_false(),
m_kbase(kbase),
m_verbose(false),
m_rule_stat_collector_p(),
m_max_rule_visit(m_kbase.get_max_rule_visit())
{
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::get_beta_relation
//
/////////////////////////////////////////////////////////////////////////////////////////
internal::beta_relation&
rule_session::get_beta_relation(internal::rule_vertex v)
{
beta_relation_ptr_type & r = m_relations[v];
if(!r) {
knowledge_term const& kterm = m_kbase.get_knowledge_term(v);
internal::rule_term_ptr_type const& rule_term_p = kterm.get_rule_term();
r.reset(new internal::beta_relation(rule_term_p->get_index_map_size(),
kterm.get_knowledge_rule().get_rule_salience(),
v));
//*O* v, 1000, 1000));
r->set_lookup_index(rule_term_p->get_lookup_index());
r->set_is_consequent_term(kterm.is_consequent());
};
return *r;
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::initialize
//
/////////////////////////////////////////////////////////////////////////////////////////
void
rule_session::initialize()
{
// m_relations = beta_relation_map_type(m_relations.size());
internal::beta_relation& head_relation = get_beta_relation(m_kbase.get_head_rule_vertex());
internal::relation_row_ptr_type head_row_p = head_relation.create_relation_row();
head_relation.insert_row(NULL, head_row_p, 0);
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::test_max_cardinality
//
// returns true if succeed owl max cardinality test w/ (c rdf:type owl:Restriction)
/////////////////////////////////////////////////////////////////////////////////////////
bool
rule_session::test_max_cardinality(rdf::index_type const s, rdf::index_type const c)
{
// see if result is already cached
rdf::rdf_session::index_iterator ctor = m_rdf_session_p->find_index(s, c, rdf::all_objects());
if(!ctor.is_end()) {
rdf::index_type o = ctor.get_triple().get_object();
return o == m_owl_true ? true : false;
}
rdf::rdf_graph_ptr_type meta_graph_p = m_kbase.get_meta_graph();
if(!m_owl_onProperty) {
m_owl_onProperty = meta_graph_p->create_resource_as_index("owl:onProperty");
m_owl_maxCardinality = meta_graph_p->create_resource_as_index("owl:maxCardinality");
m_owl_minCardinality = meta_graph_p->create_resource_as_index("owl:minCardinality");
m_owl_cardinality = meta_graph_p->create_resource_as_index("owl:cardinality");
m_owl_sameAs = meta_graph_p->create_resource_as_index("owl:sameAs");
m_owl_true = meta_graph_p->create_literal_as_index("true", int(1));
m_owl_false = meta_graph_p->create_literal_as_index("false", int(0));
}
// get the property of the restriction
rdf::rdf_graph::index_iterator itor = meta_graph_p->find_index(c, m_owl_onProperty, rdf::all_objects());
if(itor.is_end()) {
if(m_verbose) std::cout << "test_max_cardinality: The knowledge base meta model is not an OWL model!\n";
return false; // fails the test
}
rdf::index_type p = itor.get_triple().get_object();
// get the cardinality restriction
itor = meta_graph_p->find_index(c, m_owl_maxCardinality, rdf::all_objects());
if(itor.is_end()) {
if(m_verbose) std::cout << "test_max_cardinality: The knowledge base meta model is not an OWL model!\n";
return false; // fails the test
}
float max_n = float(meta_graph_p->get_literal(itor.get_triple().get_object()).get_int());
// compute the cardinality
rdf::rdf_session::index_iterator stor = m_rdf_session_p->find_index(s, p, rdf::all_objects());
float cardi=0.0;
while(!stor.is_end()) {
rdf::index_type o = stor.get_triple().get_object();
// check if the object is owl:sameAs other objects to determine the semanticaly unique relations.
int n_same_as = 0;
rdf::rdf_session::index_iterator jtor = m_rdf_session_p->find_index(o, m_owl_sameAs, rdf::all_objects());
while(!jtor.is_end()) {
++n_same_as;
jtor.next();
}
cardi += 1.0 / (n_same_as + 1.0);
stor.next();
}
bool result = cardi <= (max_n+0.1);
// cache the result in the inferred graph - don't fire any evants since it is of no interest to the rules
m_rdf_session_p->insert_inferred_no_events(s, c, result ? m_owl_true : m_owl_false);
return result;
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::test_min_cardinality
//
// returns true if succeed owl min cardinality test w/ (c rdf:type owl:Restriction)
/////////////////////////////////////////////////////////////////////////////////////////
bool
rule_session::test_min_cardinality(rdf::index_type const s, rdf::index_type const c)
{
// see if result is already cached
rdf::rdf_session::index_iterator ctor = m_rdf_session_p->find_index(s, c, rdf::all_objects());
if(!ctor.is_end()) {
rdf::index_type o = ctor.get_triple().get_object();
return o == m_owl_true ? true : false;
}
rdf::rdf_graph_ptr_type meta_graph_p = m_kbase.get_meta_graph();
if(!m_owl_onProperty) {
m_owl_onProperty = meta_graph_p->create_resource_as_index("owl:onProperty");
m_owl_maxCardinality = meta_graph_p->create_resource_as_index("owl:maxCardinality");
m_owl_minCardinality = meta_graph_p->create_resource_as_index("owl:minCardinality");
m_owl_cardinality = meta_graph_p->create_resource_as_index("owl:cardinality");
m_owl_sameAs = meta_graph_p->create_resource_as_index("owl:sameAs");
m_owl_true = meta_graph_p->create_literal_as_index("true", int(1));
m_owl_false = meta_graph_p->create_literal_as_index("false", int(0));
}
// get the property of the restriction
rdf::rdf_graph::index_iterator itor = meta_graph_p->find_index(c, m_owl_onProperty, rdf::all_objects());
if(itor.is_end()) {
if(m_verbose) std::cout << "test_min_cardinality: The knowledge base meta model is not an OWL model!\n";
return false; // fails the test
}
rdf::index_type p = itor.get_triple().get_object();
// get the cardinality restriction
itor = meta_graph_p->find_index(c, m_owl_minCardinality, rdf::all_objects());
if(itor.is_end()) {
if(m_verbose) std::cout << "test_min_cardinality: The knowledge base meta model is not an OWL model!\n";
return false; // fails the test
}
float min_n = float(meta_graph_p->get_literal(itor.get_triple().get_object()).get_int());
// compute the cardinality
rdf::rdf_session::index_iterator stor = m_rdf_session_p->find_index(s, p, rdf::all_objects());
float cardi=0;
bool result = false;
while(!stor.is_end() and !result) {
rdf::index_type o = stor.get_triple().get_object();
// check if the object is owl:sameAs other objects to determine the semanticaly unique relations.
int n_same_as = 0;
rdf::rdf_session::index_iterator jtor = m_rdf_session_p->find_index(o, m_owl_sameAs, rdf::all_objects());
while(!jtor.is_end()) {
++n_same_as;
jtor.next();
}
cardi += 1.0 / (n_same_as + 1.0);
result = (cardi + 0.1) >= min_n;
stor.next();
}
// cache the result in the inferred graph
m_rdf_session_p->insert_inferred_no_events(s, c, result ? m_owl_true : m_owl_false);
return result;
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::test_cardinality
//
// returns true if succeed owl cardinality test w/ (c rdf:type owl:Restriction)
/////////////////////////////////////////////////////////////////////////////////////////
bool
rule_session::test_cardinality(rdf::index_type const s, rdf::index_type const c)
{
// see if result is already cached
rdf::rdf_session::index_iterator ctor = m_rdf_session_p->find_index(s, c, rdf::all_objects());
if(!ctor.is_end()) {
rdf::index_type o = ctor.get_triple().get_object();
return o == m_owl_true ? true : false;
}
rdf::rdf_graph_ptr_type meta_graph_p = m_kbase.get_meta_graph();
if(!m_owl_onProperty) {
m_owl_onProperty = meta_graph_p->create_resource_as_index("owl:onProperty");
m_owl_maxCardinality = meta_graph_p->create_resource_as_index("owl:maxCardinality");
m_owl_minCardinality = meta_graph_p->create_resource_as_index("owl:minCardinality");
m_owl_cardinality = meta_graph_p->create_resource_as_index("owl:cardinality");
m_owl_sameAs = meta_graph_p->create_resource_as_index("owl:sameAs");
m_owl_true = meta_graph_p->create_literal_as_index("true", int(1));
m_owl_false = meta_graph_p->create_literal_as_index("false", int(0));
}
// get the property of the restriction
rdf::rdf_graph::index_iterator itor = meta_graph_p->find_index(c, m_owl_onProperty, rdf::all_objects());
if(itor.is_end()) {
if(m_verbose) std::cout << "test_cardinality: The knowledge base meta model is not an OWL model!\n";
return false; // fails the test
}
rdf::index_type p = itor.get_triple().get_object();
// get the cardinality restriction
itor = meta_graph_p->find_index(c, m_owl_cardinality, rdf::all_objects());
if(itor.is_end()) {
if(m_verbose) std::cout << "test_cardinality: The knowledge base meta model is not an OWL model!\n";
return false; // fails the test
}
float card_n = float(meta_graph_p->get_literal(itor.get_triple().get_object()).get_int());
// compute the cardinality
rdf::rdf_session::index_iterator stor = m_rdf_session_p->find_index(s, p, rdf::all_objects());
float cardi=0;
while(!stor.is_end()) {
rdf::index_type o = stor.get_triple().get_object();
// check if the object is owl:sameAs other objects to determine the semanticaly unique relations.
int n_same_as = 0;
rdf::rdf_session::index_iterator jtor = m_rdf_session_p->find_index(o, m_owl_sameAs, rdf::all_objects());
while(!jtor.is_end()) {
++n_same_as;
jtor.next();
}
cardi += 1.0 / (n_same_as + 1.0);
stor.next();
}
bool result = (cardi >= (card_n-0.1) and cardi <= (card_n+0.1));
// cache the result in the inferred graph
m_rdf_session_p->insert_inferred_no_events(s, c, result ? m_owl_true : m_owl_false);
return result;
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::query_rule_wrapper
//
/////////////////////////////////////////////////////////////////////////////////////////
query_rule_wrapper
rule_session::get_query(std::string const& name)
{
return get_query(name, query_params_map());
};
query_rule_wrapper
rule_session::get_query(std::string const& name, query_params_map const& params)
{
return query_rule_wrapper(m_kbase, *this, name, params);
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::execute_rules
//
/////////////////////////////////////////////////////////////////////////////////////////
void
rule_session::execute_rules()
{
m_rdf_session_p->get_inferred_graph()->register_call_back_manager(this, m_kbase.get_inferred_cback_mgr());
m_rdf_session_p->get_asserted_graph()->register_call_back_manager(this, m_kbase.get_asserted_cback_mgr());
execute_rules(m_kbase.get_head_rule_vertex(), true);
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::execute_rules
//
/////////////////////////////////////////////////////////////////////////////////////////
void
rule_session::execute_rules(internal::rule_vertex const from_vertex, bool apply_consequents)
{
internal::rule_propagator<internal::apply_rule_action> propagator(&m_kbase, internal::apply_rule_action(&m_kbase));
execute_rules_internal(propagator, from_vertex, apply_consequents);
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::execute_retract_rules
//
/////////////////////////////////////////////////////////////////////////////////////////
void
rule_session::execute_retract_rules(internal::rule_vertex const from_vertex)
{
internal::rule_propagator<internal::retract_rule_action> propagator(&m_kbase, internal::retract_rule_action(&m_kbase));
execute_rules_internal(propagator, from_vertex, false);
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::apply_consequent_rules
//
/////////////////////////////////////////////////////////////////////////////////////////
void
rule_session::apply_consequent_rules()
{
using rule::internal::beta_relation;
using rule::internal::relation_row_map;
rule_event_ptr_type event_p;
while(has_visited_consequents()) {
priority_consequent_ptr_type row_event_p = top_priority_visited_consequent();
internal::relation_row_ptr_type & row_p = row_event_p->row_p;
pop_visited_consequent();
if(row_p->is_processed()) {
continue;
}
knowledge_rule const& rule = m_kbase.get_knowledge_term(row_event_p->vertex).get_knowledge_rule();
beta_relation & b_relation = get_beta_relation(row_event_p->vertex);
if(is_logging_rule_events()) {
event_p.reset(new rule_event_infer(true, &rule, row_p));
event_p->initialize_body_triples(this);
log_rule_event(event_p);
}
if(m_rule_stat_collector_p) {
m_rule_stat_collector_p->triple_inferred(rule);
}
knowledge_rule::kterm_ptr_const_iterator itor = rule.get_consequent_terms_begin();
knowledge_rule::kterm_ptr_const_iterator end = rule.get_consequent_terms_end();
for(; itor != end; ++itor) {
if(row_p->is_inserted()) {
try {
(*itor)->get_rule_term()->compute_inferred_triples(this, *row_p);
} catch(rdf::rdf_exception const& e) {
std::cout << "rule_session::apply_consequent_rules(): Exception caught while processing inserted row: " << e << std::endl;
std::cout << "while processing consequent terms of rule " << rule.get_rule_name() << std::endl;
throw e;
}
} else if(row_p->is_deleted()) {
try {
(*itor)->get_rule_term()->retract_inferred_triples(this, *row_p);
} catch(rdf::rdf_exception const& e) {
std::cout << "rule_session::apply_consequent_rules(): Exception caught while processing deleted row: " << e << std::endl;
std::cout << "while processing consequent terms of rule " << rule.get_rule_name() << std::endl;
throw e;
}
}
}
if(row_p->is_inserted()) {
if(event_p) event_p->set_inferred();
row_p->set_processed();
} else if(row_p->is_deleted()) {
if(event_p) event_p->set_retracted();
b_relation.erase_deleted_row(row_p);
}
// check if any backward chaining rule need to be executed
execute_scheduled_reasoners();
}
};
// ============================================================================================================
// MEMBER FUNCTIONS FOR BACKWARD CHAINING RULES
// ============================================================================================================
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::execute_scheduled_reasoners
//
/////////////////////////////////////////////////////////////////////////////////////////
void
rule_session::execute_scheduled_reasoners()
{
while(!m_reasoners_scheduled.empty()) {
backw_rule_vertex_set_t::iterator itor = m_reasoners_scheduled.begin();
internal::rule_vertex rule_vertex = *itor;
if(m_verbose) {
std::cout << "rule_session::execute_scheduled_reasoners: executing backward chaining rule: "
<< get_backward_chaining_rule_name(m_kbase, rule_vertex) << std::endl;
}
m_reasoners_executed.insert(rule_vertex);
m_reasoners_scheduled.erase(itor);
internal::single_rule_propagator<internal::apply_rule_action> propagator(&m_kbase, internal::apply_rule_action(&m_kbase));
try {
propagator(this, rule_vertex);
} catch(rdf::rdf_exception const& e) {
std::cout << "rule_session::execute_scheduled_reasoners: Exception caught while executing backward chaining rules, message: " << e.what() << std::endl;
if(e.code() == rdf::rule_infinite_loop) std::cout << "Infinite loop detected while executing backward chaining rules" << std::endl;
throw e;
} catch(...) {
const char * msg = "rule_session::execute_scheduled_reasoners: Unknown (general) Exception caught while executing forward chaining rules!!, no message available";
std::cout << msg << std::endl;
throw rdf::rdf_exception(rdf::none, msg);
}
}
};
// ============================================================================================================
// MEMBER FUNCTIONS FOR EXPLAIN WHY
// ============================================================================================================
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::explain_why
//
/////////////////////////////////////////////////////////////////////////////////////////
explain_ptr_type
rule_session::explain_why(rdf::index_type const s, rdf::index_type const p, rdf::index_type const o)
{
if(!is_logging_rule_events()) {
std::string message("rule_session::explain_why: ERROR-X1: explain_why facility requires the flag is_logging_rule_events to be set to true.");
std::cout << message << std::endl;
throw rdf::rdf_exception(rdf::explain_why_missing, message);
}
// set up the obj to return
explain_ptr_type explain_ptr(new explain(this));
explain_graph_type & graph = explain_ptr->get_explain_graph();
// find if (s, p, o) is an asserted or inferred triple
if(m_rdf_session_p->get_asserted_graph()->contains(s, p, o)) {
explain_info_ptr_type info_p(new explain_info_triple(rdf::index_triple(s, p, o), true));
explain_vertex explain_v = boost::add_vertex(explain_properties(info_p), graph);
info_p->set_explain_vertex(explain_v);
} else if(m_rdf_session_p->get_inferred_graph()->contains(s, p, o)) {
rdf::index_triple triple(s, p, o);
// set up the root of the graph, then build graph recursively
explain_info_ptr_type info_p(new explain_info_triple(triple, false));
explain_vertex explain_v = boost::add_vertex(explain_properties(info_p), graph);
info_p->set_explain_vertex(explain_v);
// keep a map of visited triples to avoid duplication in explanations
explain_vertex_lookup_map_type lookup_map;
lookup_map.insert(explain_vertex_lookup_map_type::value_type(triple, explain_v));
explain_why_graph(graph, lookup_map, explain_v, triple);
}
return explain_ptr;
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::explain_why_graph
//
/////////////////////////////////////////////////////////////////////////////////////////
void
rule_session::explain_why_graph(explain_graph_type & graph, explain_vertex_lookup_map_type & lookup_map, explain_vertex const root_vertex, rdf::index_triple const explain_triple)
{
typedef std::pair<explain_vertex, rdf::index_triple > stack_elm;
std::vector<stack_elm> stack;
stack.reserve(100);
stack.push_back(stack_elm(root_vertex, explain_triple));
while(!stack.empty()) {
// get the rule_events that inferred the triple
stack_elm & elm = stack.back();
explain_vertex u = elm.first;
rdf::index_triple triple = elm.second;
stack.pop_back();
explain_lookup_map_type::const_iterator itor;
explain_lookup_map_type::const_iterator end;
boost::tie(itor, end) = m_explain_lookup_map.equal_range(triple);
for(; itor!=end; ++itor) {
rule_event_ptr_type event_p = itor->second;
if(event_p->get_relation_row()->is_deleted()) continue;
explain_info_ptr_type info_p(new explain_info_rule(event_p));
explain_vertex v = boost::add_vertex(explain_properties(info_p), graph);
info_p->set_explain_vertex(v);
boost::add_edge(u, v, graph);
// push all body triples into the stack
rule_event_base::array_body_triples_type::const_iterator body_itor = event_p->body_triples_begin();
rule_event_base::array_body_triples_type::const_iterator body_end = event_p->body_triples_end();
rdf::index_triple body_triple;
bool is_assertion;
for(; body_itor!=body_end; ++body_itor) {
boost::tie(body_triple, is_assertion) = *body_itor;
if(!is_assertion) continue;
// check if triple is already into the graph
explain_vertex_lookup_map_type::const_iterator xitor = lookup_map.find(body_triple);
if(xitor != lookup_map.end()) {
explain_vertex w = xitor->second;
boost::add_edge(v, w, graph);
} else if(m_rdf_session_p->get_asserted_graph()->contains(body_triple)) {
explain_info_ptr_type info_p(new explain_info_triple(body_triple, true));
explain_vertex w = boost::add_vertex(explain_properties(info_p), graph);
info_p->set_explain_vertex(w);
boost::add_edge(v, w, graph);
lookup_map.insert(explain_vertex_lookup_map_type::value_type(body_triple, w));
} else {
// inferred triple that is not in the graph yet
explain_info_ptr_type info_p(new explain_info_triple(body_triple, false));
explain_vertex w = boost::add_vertex(explain_properties(info_p), graph);
info_p->set_explain_vertex(w);
boost::add_edge(v, w, graph);
lookup_map.insert(explain_vertex_lookup_map_type::value_type(body_triple, w));
stack.push_back(stack_elm(w, body_triple));
}
}
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////
// rule_session::print_beta_relations
//
// debugging method
/////////////////////////////////////////////////////////////////////////////////////////
void
rule_session::print_beta_relations()const
{
std::cout << "Nodes in the Rete Network (rule graph):\n"
<< "---------------------------------------\n\n";
unsigned int sz = m_relations.size();
for(rule::internal::rule_vertex u=1; u<sz; ++u) {
if(m_relations[u]) {
std::cout << std::endl;
internal::knowledge_term const& kterm = m_kbase.get_knowledge_term(u);
std::string msg(rdf::to_string(kterm) + ", ");
print_beta_relation( msg, u, this);
}
}
};
// ============================================================================================================
// CLASSES FOR QUERY RULE
// ============================================================================================================
/////////////////////////////////////////////////////////////////////////////////////////
// query_rule_wrapper::execute
//
/////////////////////////////////////////////////////////////////////////////////////////
query_result_ptr_type
query_rule_wrapper::execute()
{
// clear all beta_relations of the query rule
// need to do this in case the params of the query have changed since last invokation.
knowledge_rule::rule_vertex_const_iterator itor = m_query_rule_p->get_body_term_vertices_begin();
knowledge_rule::rule_vertex_const_iterator end = m_query_rule_p->get_body_term_vertices_end();
internal::rule_vertex from_vertex = *itor;
internal::beta_relation& from_relation = m_rule_session.get_beta_relation(from_vertex);
if(!from_relation.empty()) {
for(; itor!=end; ++itor) {
m_rule_session.get_beta_relation(*itor).clear();
}
}
// insert a row in the rule first term (pseudo head)
from_relation.clear();
internal::relation_row_ptr_type head_row_p = from_relation.create_relation_row();
std::size_t hash_code = initialize_head_row(head_row_p);
from_relation.insert_row(NULL, head_row_p, hash_code);
internal::single_rule_propagator<internal::apply_rule_action> propagator(&m_kbase, internal::apply_rule_action(&m_kbase));
m_rule_session.execute_rules_internal(propagator, get_rule_vertex(), true);
return query_result_ptr_type(new query_result(m_kbase, *this, m_rule_session.get_beta_relation(get_tail_query_vertex())));
};
/////////////////////////////////////////////////////////////////////////////////////////
// query_rule_wrapper::initialize_head_row
//
/////////////////////////////////////////////////////////////////////////////////////////
std::size_t
query_rule_wrapper::initialize_head_row(internal::relation_row_ptr_type head_row_p)const
{
std::size_t hash_code = 0;
internal::rule_term_ptr_type query_head_rt_p = get_head_rule_term_p();
query_params_map::params_t::const_iterator itor = m_params.get_params_begin();
query_params_map::params_t::const_iterator end = m_params.get_params_end();
for(; itor!=end; ++itor) {
std::string const& key = itor->first;
rdf::index_type const& value = itor->second;
(*head_row_p)[query_head_rt_p->get_index(key).first] = value;
hash_code += std::size_t(value);
};
return hash_code;
};
}; /* rule namespace */
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.