Menu

[r45]: / trunk / libtop_engine / knowledge_base.cpp  Maximize  Restore  History

Download this file

351 lines (270 with data), 12.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#include "knowledge_base.h"
#include "rule_session.h"
#include "rule_term.h"
#include "kb_parser.h"
#include "psearch_db.h"
namespace rule {
knowledge_base::knowledge_base(rdf::rdf_graph_ptr_type const& meta_graph_p):
m_meta_graph_p(meta_graph_p),
m_nbr_vertice(1),
m_nbr_dep_graph_vertice(0),
m_head_vertices(),
m_rule_graph(),
m_rule_dependency_graph(),
m_head(0),
m_dependency_head(0),
m_query_rule_map(),
m_kterm_map(),
m_has_explain_info(true),
m_optimization_flag(false),
m_lookup_index(false),
m_max_rule_visit(10),
m_knowledge_rules(),
m_back_reasoner_mgr(),
m_rdf_inferred_cback_mgr(),
m_rdf_asserted_cback_mgr(),
m_name_set(),
m_psearch_db_p(),
m_tpl_encoder_model_p(new parser::tpl_encoder_model(m_meta_graph_p, false))
{
m_knowledge_rules.reserve(100);
m_head_vertices.reserve(50);
m_head_vertices.push_back(m_head);
create_knowledge_rule(head_rule_rt, "_top_head_rule_", 0);
m_psearch_db_p = psearch::psearch_db_ptr_type(new psearch::PSearchDB(m_meta_graph_p));
};
void
knowledge_base::activate_knowledge_rules(bool verbose)
{
// compile the knowledge rules
// -----------------------------------------------------------------------------------------
unsigned int graph_size = m_nbr_vertice;
knowledge_rule_map_type::iterator itor = m_knowledge_rules.begin();
knowledge_rule_map_type::iterator end = m_knowledge_rules.end();
for(; itor != end; ++itor) {
try {
(*itor)->compile_rule();
graph_size += (*itor)->nbr_rule_vertices();
} catch(rdf::rdf_exception const& e) {
std::string msg = "knowledge_base::activate_knowledge_rules: Exception caught while compiling rule "+(*itor)->get_rule_name()+", message: "+e.what();
std::cout << msg << std::endl;
throw rdf::rdf_exception(rdf::invalid_rule_def, msg);
} catch(...) {
std::string msg("knowledge_base::activate_knowledge_rules: Unknown (general) Exception caught while compiling rules "+(*itor)->get_rule_name()+", no message available");
std::cout << msg << std::endl;
throw rdf::rdf_exception(rdf::none, msg);
}
}
// create data structure of sufficient size
// -----------------------------------------------------------------------------------------
m_rule_graph = rule_graph_type(graph_size);
m_kterm_map = knowledge_term_map_type(graph_size);
// create the head terms
// -----------------------------------------------------------------------------------------
// kterm_ptr_type head_term_p = kterm_ptr_type(new internal::rule_head_term(**m_knowledge_rules.begin()));
// internal::rule_term_ptr_type left_term = head_term_p->create_rule_term(internal::rule_term_ptr_type(), internal::var_set_t());
// head_term_p->set_rule_term(left_term);
// head_term_p->set_name("head");
// add_knowledge_term_mapping(m_head, head_term_p);
// create the rule graph vertices for the knowledge rules
// -----------------------------------------------------------------------------------------
itor = m_knowledge_rules.begin();
for(; itor != end; ++itor) {
knowledge_rule_ptr_type rule_p = *itor;
// create the rule vertices
//---------------------------
rule_p->create_rule_vertices(verbose);
}
// for each consequent term, check if rule terms need to register to the inferred graph
// -----------------------------------------------------------------------------------------
itor = m_knowledge_rules.begin();
for(; itor != end; ++itor) {
knowledge_rule_ptr_type rule_p = *itor;
// for each consequent term, check if rule terms need to register to the inferred graph
knowledge_rule::kterm_ptr_const_iterator citor = rule_p->get_consequent_terms_begin();
knowledge_rule::kterm_ptr_const_iterator cend = rule_p->get_consequent_terms_end();
for(; citor != cend; ++citor) {
internal::rule_term_ptr_type rule_term_p = (*citor)->get_rule_term();
kterm_ptr_const_iterator k_itor = get_knowledge_terms_begin();
kterm_ptr_const_iterator k_end = get_knowledge_terms_end();
for(; k_itor != k_end; ++k_itor) {
if(*k_itor) (*k_itor)->check_for_register_inferred_triple(rule_term_p);
}
}
}
// optimize beta relation indexes and create the rule_term
// -----------------------------------------------------------------------------------------
// visit all head vertices, including query rules
internal::optimize_indexes_action action(this);
rule_vertices_type::const_iterator v_itor = m_head_vertices.begin();
rule_vertices_type::const_iterator v_end = m_head_vertices.end();
for(; v_itor!=v_end; ++v_itor) {
deep_first_search(*v_itor, action);
}
if(verbose) {
std::cout << std::endl;
std::cout << "KB: Asserted callback manager: " << m_rdf_asserted_cback_mgr << std::endl;
std::cout << "KB: Inferred callback manager: " << m_rdf_inferred_cback_mgr << std::endl;
std::cout << std::endl;
}
// compute the rule dependency graph
// -----------------------------------------------------------------------------------------
compute_dependency_graph();
};
template<class A>
void
knowledge_base::deep_first_search(rule_vertex_type from_vertex, A & action)
{
// visit the graph from the root node toward the leafs
// use a deep first search approach but need to calculate the index of the parent node before doing the children
// as a consequence, will need to revisit the children nodes for each parent nodes.
typedef rule_graph_type::adjacency_iterator iter_t;
typedef std::pair<iter_t, iter_t> iter_pair_t;
typedef std::pair<internal::rule_vertex, iter_pair_t > stack_elm;
std::vector<stack_elm> stack;
stack.reserve(get_nbr_vertices());
iter_pair_t iter_pair = boost::adjacent_vertices(from_vertex, m_rule_graph);
stack.push_back(stack_elm(from_vertex, iter_pair));
while(!stack.empty()) {
stack_elm & elm = stack.back();
internal::rule_vertex u = elm.first;
iter_t itor = elm.second.first;
iter_t end = elm.second.second;
stack.pop_back();
for(; itor!=end; ++itor) {
internal::rule_vertex v = *itor;
// apply the action on the current vertex
action(u, v);
stack.push_back(stack_elm(v, boost::adjacent_vertices(v, m_rule_graph)));
}
}
};
void
knowledge_base::compute_dependency_graph()
{
m_rule_dependency_graph = rule_graph_type(m_knowledge_rules.size());
knowledge_rule_map_type::iterator itor = m_knowledge_rules.begin();
knowledge_rule_map_type::iterator end = m_knowledge_rules.end();
for(; itor != end; ++itor) {
add_rule_dependency_graph_edge(
get_head_rule_dependency_vertex(), // dependency graph head vertex -->
(*itor)->get_dependency_graph_vertex()); // rule vertex
knowledge_rule::kterm_ptr_const_iterator citor = (*itor)->get_consequent_terms_begin();
knowledge_rule::kterm_ptr_const_iterator cend = (*itor)->get_consequent_terms_end();
for(; citor != cend; ++citor) {
knowledge_rule_map_type::iterator jtor = m_knowledge_rules.begin();
for(; jtor != end; ++jtor) {
if(jtor != itor) {
knowledge_rule::kterm_ptr_const_iterator b_itor = (*jtor)->get_body_terms_begin();
knowledge_rule::kterm_ptr_const_iterator b_end = (*jtor)->get_body_terms_end();
for(; b_itor != b_end; ++b_itor) {
if((*b_itor)->get_rule_term()->check_for_match((*citor)->get_rule_term())) {
add_rule_dependency_graph_edge(
(*jtor)->get_dependency_graph_vertex(), // rule of body term --->
(*itor)->get_dependency_graph_vertex()); // rule of consequent term
}
}
}
}
}
if((*itor)->get_rule_type() == backward_chaining_rule) {
knowledge_rule_map_type::iterator jtor = m_knowledge_rules.begin();
for(; jtor != end; ++jtor) {
if(jtor != itor) {
knowledge_rule::kterm_ptr_const_iterator b_itor = (*jtor)->get_body_terms_begin();
knowledge_rule::kterm_ptr_const_iterator b_end = (*jtor)->get_body_terms_end();
internal::rule_term_ptr_type rule_head_term_p = (*itor)->get_head_term()->get_rule_term();
for(; b_itor != b_end; ++b_itor) {
if((*b_itor)->get_rule_term()->check_for_match(rule_head_term_p)) {
add_rule_dependency_graph_edge(
(*jtor)->get_dependency_graph_vertex(), // rule of body term --->
(*itor)->get_dependency_graph_vertex()); // backward chaining rule
}
}
}
}
}
}
};
/////////////////////////////////////////////////////////////////////////////////////////
// decode_meta_graph
//
// Decode the rdf meta graph using the encoded_buffer
// returns a knowledge_base created w/ the meta graph and loading the kbase config
/////////////////////////////////////////////////////////////////////////////////////////
knowledge_base_ptr_type
decode_meta_graph(std::string const& kbase_fname, std::string const& encoded_buffer, bool verbose)
{
rdf::rdf_graph_ptr_type meta_graph_p = rdf::create_rdf_graph();
parser::tpl_encoder_model_ptr_type encoder_model_p = parser::create_tpl_encoder_model(meta_graph_p, verbose);
encoder_model_p->decode(encoded_buffer);
knowledge_base_ptr_type kbase_p = parser::load_knowledge_base(kbase_fname, meta_graph_p, verbose);
kbase_p->set_tpl_encoder_model(encoder_model_p);
return kbase_p;
};
namespace internal {
void
extract_variables_action::operator()(rule_vertex, rule_vertex v)
{
knowledge_term & kterm = m_kbase_p->get_knowledge_term(v);
kterm.extract_vars(m_var_set);
if(kterm.has_filter()) kterm.get_filter()->extract_vars(m_var_set);
if(kterm.is_consequent()) {
knowledge_rule const& rule = kterm.get_knowledge_rule();
// get the set of variables that are in the consequent term - case forward and backward chaining rule
knowledge_rule::kterm_ptr_const_iterator itor = rule.get_consequent_terms_begin();
knowledge_rule::kterm_ptr_const_iterator end = rule.get_consequent_terms_end();
for(; itor!=end; ++itor) (*itor)->extract_vars(m_var_set);
// if keeping all variables, i.e., having explain terms, then take all body terms variable
// this is a bit of a duplicate work but some rule may kkep all variables while some other may not
// and two such rules may share terms!
if(rule.has_explain_info()) {
knowledge_rule::kterm_ptr_const_iterator itor = rule.get_body_terms_begin();
knowledge_rule::kterm_ptr_const_iterator end = rule.get_body_terms_end();
for(; itor!=end; ++itor) (*itor)->extract_vars(m_var_set);
}
}
};
void
optimize_indexes_action::operator()(rule_vertex parent, rule_vertex v)
{
knowledge_term & kterm = m_kbase_p->get_knowledge_term(v);
knowledge_rule & rule = kterm.get_knowledge_rule();
// calculate the variables to the right of the rule term identified by v
extract_variables_action action(m_kbase_p);
var_set_t & right_vars = action.get_variables();
// extract the variables to the right of current rule term
action(0, v);
// if this is a query, add the select variables into right_vars
if(rule.get_rule_type() == query_rule) {
knowledge_rule::string_const_iterator itor = rule.get_select_vars_begin();
knowledge_rule::string_const_iterator end = rule.get_select_vars_end();
for(; itor!=end; ++itor) {
right_vars.insert(*itor);
}
}
// use deep first seach on apply action oin all children of v
m_kbase_p->deep_first_search(v, action);
// update the beta relation indexes
rule_term_ptr_type left_term_p = m_kbase_p->get_knowledge_term(parent).get_rule_term();
rule_term_ptr_type rule_term_p = kterm.get_rule_term();
// rebuild the rule term
rule_term_p = kterm.create_rule_term(left_term_p, right_vars);
kterm.set_rule_term(rule_term_p);
// register knowledge term to the inferred graph for insert/delete notification
if(kterm.register_to_inferred_graph()) {
m_kbase_p->register_edge_to_inferred_graph(&rule, parent, v);
// notify parent to build lookup index
if(m_kbase_p->get_lookup_index_flag()) {
left_term_p->set_lookup_index(rule_term_p->get_preferred_lookup_index());
}
}
// register the rule term to fire backward chaining rule as needed
rule_term_p->register_backward_chaining_rules(m_kbase_p->get_back_reasoner_mgr());
// rebuild the consequent and explaination terms
if(kterm.is_consequent()) {
rule.build_consequent_and_explaination_terms(rule_term_p, right_vars);
}
};
}; /* internal namespace */
}; /* rule namespace */
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.