This project provides fast Python implementations of several different popular recommendation algorithms for implicit feedback datasets. All models have multi-threaded training routines, using Cython and OpenMP to fit the models in parallel among all available CPU cores. In addition, the ALS and BPR models both have custom CUDA kernels - enabling fitting on compatible GPU’s. This library also supports using approximate nearest neighbour libraries such as Annoy, NMSLIB and Faiss for speeding up making recommendations.
Features
- Fast Python Collaborative Filtering for Implicit Datasets
- Logistic Matrix Factorization
- Bayesian Personalized Ranking
- Documentation available
- Implicit can be installed from pypi
- Examples included
Categories
Machine LearningLicense
MIT LicenseFollow Implicit
Other Useful Business Software
Auth0 for AI Agents now in GA
Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of Implicit!