Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before they pass into a neural network (if you use augmentation). The general recommendation is to use suitable augs for your data and as many as possible, then after some time of training disable the most destructive (for image) augs. You can turn on automatic mixed precision with one flag --amp. You should expect it to be 33% faster and save up to 40% memory. Aim is an open-source experiment tracker that logs your training runs, and enables a beautiful UI to compare them.

Features

  • Base code to augment your image
  • You can use some options to change result
  • This library contains several types of embedded augmentations
  • You can turn on automatic mixed precision with one flag --amp
  • Visualize training insights with Aim
  • View all tracked runs, each metric last tracked values and tracked hyperparameters in Runs Dashboard

Project Samples

Project Activity

See All Activity >

License

MIT License

Follow Lightweight' GAN

Lightweight' GAN Web Site

Other Useful Business Software
Our Free Plans just got better! | Auth0 Icon
Our Free Plans just got better! | Auth0

With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Lightweight' GAN!