The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal integration strategies that influenced modern architectures like SlowFast and X3D.
Features
- Implements R(2+1)D and MCx models for efficient spatiotemporal video representation learning
- Enables reproducibility of FAIR’s published video understanding research
- Built with both Caffe2 and PyTorch backends for flexibility
- Supports Gradient Blending for audio-visual fusion (Caffe2 only)
- Provides pre-trained models on IG-65M, one of the largest weakly-supervised video datasets
- Includes CSN (Channel-Separated Networks) for computationally efficient video recognition
License
Apache License V2.0Follow VMZ (Video Model Zoo)
Other Useful Business Software
Our Free Plans just got better! | Auth0
You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of VMZ (Video Model Zoo)!