Suggested Categories:

Artificial Intelligence Software
Artificial Intelligence (AI) software is computer technology designed to simulate human intelligence. It can be used to perform tasks that require cognitive abilities, such as problem-solving, data analysis, visual perception and language translation. AI applications range from voice recognition and virtual assistants to autonomous vehicles and medical diagnostics.
  • 1
    Google Cloud TPU
    Machine learning has produced business and research breakthroughs ranging from network security to medical diagnoses. We built the Tensor Processing Unit (TPU) in order to make it possible for anyone to achieve similar breakthroughs. Cloud TPU is the custom-designed machine learning ASIC that powers Google products like Translate, Photos, Search, Assistant, and Gmail. Here’s how you can put the TPU and machine learning to work accelerating your company’s success, especially at scale. Cloud TPU is designed to run cutting-edge machine learning models with AI services on Google Cloud. ...
    Starting Price: $0.97 per chip-hour
  • 2
    Frigate+

    Frigate+

    Frigate+

    ...Let Frigate's AI scrub your video feeds for you. With a single Google Coral TPU, Frigate can run 100+ object detections per second so it doesn't miss a single frame. Frigate tracks objects in real-time and can determine the exact moment a person starts walking up your front steps.
  • 3
    EmbeddingGemma
    ...Built on the Gemma 3 architecture, it supports over 100 languages, processes up to 2,000 input tokens, and leverages Matryoshka Representation Learning (MRL) to offer flexible embedding dimensions (768, 512, 256, or 128) for tailored speed, storage, and precision. Its GPU-and EdgeTPU-accelerated inference delivers embeddings in milliseconds, under 15 ms for 256 tokens on EdgeTPU, while quantization-aware training keeps memory usage under 200 MB without compromising quality. This makes it ideal for real-time, on-device tasks such as semantic search, retrieval-augmented generation (RAG), classification, clustering, and similarity detection, whether for personal file search, mobile chatbots, or custom domain use.
  • 4
    CodeGen

    CodeGen

    Salesforce

    CodeGen is an open-source model for program synthesis. Trained on TPU-v4. Competitive with OpenAI Codex.
    Starting Price: Free
  • 5
    Gemma 3

    Gemma 3

    Google

    Gemma 3, introduced by Google, is a new AI model built on the Gemini 2.0 architecture, designed to offer enhanced performance and versatility. This model is capable of running efficiently on a single GPU or TPU, making it accessible for a wide range of developers and researchers. Gemma 3 focuses on improving natural language understanding, generation, and other AI-driven tasks. By offering scalable, powerful AI capabilities, Gemma 3 aims to advance the development of AI systems across various industries and use cases.
    Starting Price: Free
  • 6
    JAX

    JAX

    JAX

    ...Key features of JAX include automatic differentiation, just-in-time compilation, vectorization, and parallelization, all optimized for execution on CPUs, GPUs, and TPUs. These capabilities enable efficient computation for complex mathematical functions and large-scale machine-learning models. JAX also integrates with various libraries within its ecosystem, such as Flax for neural networks and Optax for optimization tasks. Comprehensive documentation, including tutorials and user guides, is available to assist users in leveraging JAX's full potential. ​
  • 7
    CentML

    CentML

    CentML

    CentML accelerates Machine Learning workloads by optimizing models to utilize hardware accelerators, like GPUs or TPUs, more efficiently and without affecting model accuracy. Our technology boosts training and inference speed, lowers compute costs, increases your AI-powered product margins, and boosts your engineering team's productivity. Software is no better than the team who built it. Our team is stacked with world-class machine learning and system researchers and engineers. ...
  • 8
    Google Colab
    Google Colab is a free, hosted Jupyter Notebook service that provides cloud-based environments for machine learning, data science, and educational purposes. It offers no-setup, easy access to computational resources such as GPUs and TPUs, making it ideal for users working with data-intensive projects. Colab allows users to run Python code in an interactive, notebook-style environment, share and collaborate on projects, and access extensive pre-built resources for efficient experimentation and learning. Colab also now offers a Data Science Agent automating analysis, from understanding the data to delivering insights in a working Colab notebook (Sequences shortened. ...
  • 9
    Volcano Engine

    Volcano Engine

    Volcano Engine

    Volcengine is ByteDance’s cloud platform delivering a full spectrum of IaaS, PaaS, and AI services under its Volcano Ark ecosystem through global, multi‑region infrastructure. It provides elastic compute instances (CPU, GPU, and TPU), high‑performance block and object storage, virtual networking, and managed databases, all designed for seamless scalability and pay‑as‑you‑go flexibility. Integrated AI capabilities offer natural language processing, computer vision, and speech recognition via prebuilt models or custom training pipelines, while a content delivery network and Engine VE SDK enable adaptive‑bitrate streaming, low‑latency media delivery, and real‑time AR/VR rendering. ...
  • 10
    Keras

    Keras

    Keras

    ...Because Keras makes it easier to run new experiments, it empowers you to try more ideas than your competition, faster. And this is how you win. Built on top of TensorFlow 2.0, Keras is an industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. It's not only possible; it's easy. Take advantage of the full deployment capabilities of the TensorFlow platform. You can export Keras models to JavaScript to run directly in the browser, to TF Lite to run on iOS, Android, and embedded devices. It's also easy to serve Keras models as via a web API.
  • 11
    Google Cloud Deep Learning VM Image
    ...Deep Learning VM Image makes it easy and fast to instantiate a VM image containing the most popular AI frameworks on a Google Compute Engine instance without worrying about software compatibility. You can launch Compute Engine instances pre-installed with TensorFlow, PyTorch, scikit-learn, and more. You can also easily add Cloud GPU and Cloud TPU support. Deep Learning VM Image supports the most popular and latest machine learning frameworks, like TensorFlow and PyTorch. To accelerate your model training and deployment, Deep Learning VM Images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers and the Intel® Math Kernel Library. Get started immediately with all the required frameworks, libraries, and drivers pre-installed and tested for compatibility. ...
  • 12
    Google Cloud AI Infrastructure
    ...AI accelerators for every use case, from low-cost inference to high-performance training. Simple to get started with a range of services for development and deployment. Tensor Processing Units (TPUs) are custom-built ASIC to train and execute deep neural networks. Train and run more powerful and accurate models cost-effectively with faster speed and scale. A range of NVIDIA GPUs to help with cost-effective inference or scale-up or scale-out training. Leverage RAPID and Spark with GPUs to execute deep learning. Run GPU workloads on Google Cloud where you have access to industry-leading storage, networking, and data analytics technologies. ...
  • Previous
  • You're on page 1
  • Next