Best Data Management Software for Cognee

Compare the Top Data Management Software that integrates with Cognee as of February 2026

This a list of Data Management software that integrates with Cognee. Use the filters on the left to add additional filters for products that have integrations with Cognee. View the products that work with Cognee in the table below.

What is Data Management Software for Cognee?

Data management software systems are software platforms that help organize, store and analyze information. They provide a secure platform for data sharing and analysis with features such as reporting, automation, visualizations, and collaboration. Data management software can be customized to fit the needs of any organization by providing numerous user options to easily access or modify data. These systems enable organizations to keep track of their data more efficiently while reducing the risk of data loss or breaches for improved business security. Compare and read user reviews of the best Data Management software for Cognee currently available using the table below. This list is updated regularly.

  • 1
    Google Cloud BigQuery
    BigQuery is a serverless, multicloud data warehouse that simplifies the process of working with all types of data so you can focus on getting valuable business insights quickly. At the core of Google’s data cloud, BigQuery allows you to simplify data integration, cost effectively and securely scale analytics, share rich data experiences with built-in business intelligence, and train and deploy ML models with a simple SQL interface, helping to make your organization’s operations more data-driven. Gemini in BigQuery offers AI-driven tools for assistance and collaboration, such as code suggestions, visual data preparation, and smart recommendations designed to boost efficiency and reduce costs. BigQuery delivers an integrated platform featuring SQL, a notebook, and a natural language-based canvas interface, catering to data professionals with varying coding expertise. This unified workspace streamlines the entire analytics process.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    SQLite

    SQLite

    SQLite

    SQLite is a C-language library that implements a small, fast, self-contained, high-reliability, full-featured, SQL database engine. SQLite is the most used database engine in the world. SQLite is built into all mobile phones and most computers and comes bundled inside countless other applications that people use every day. SQLite is an in-process library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine. The code for SQLite is in the public domain and is thus free for use for any purpose, commercial or private. SQLite is the most widely deployed database in the world with more applications than we can count, including several high-profile projects.
    Leader badge
    Starting Price: Free
  • 3
    Snowflake

    Snowflake

    Snowflake

    Snowflake is a comprehensive AI Data Cloud platform designed to eliminate data silos and simplify data architectures, enabling organizations to get more value from their data. The platform offers interoperable storage that provides near-infinite scale and access to diverse data sources, both inside and outside Snowflake. Its elastic compute engine delivers high performance for any number of users, workloads, and data volumes with seamless scalability. Snowflake’s Cortex AI accelerates enterprise AI by providing secure access to leading large language models (LLMs) and data chat services. The platform’s cloud services automate complex resource management, ensuring reliability and cost efficiency. Trusted by over 11,000 global customers across industries, Snowflake helps businesses collaborate on data, build data applications, and maintain a competitive edge.
    Starting Price: $2 compute/month
  • 4
    Redis

    Redis

    Redis Labs

    Redis Labs: home of Redis. Redis Enterprise is the best version of Redis. Go beyond cache; try Redis Enterprise free in the cloud using NoSQL & data caching with the world’s fastest in-memory database. Run Redis at scale, enterprise grade resiliency, massive scalability, ease of management, and operational simplicity. DevOps love Redis in the Cloud. Developers can access enhanced data structures, a variety of modules, and rapid innovation with faster time to market. CIOs love the confidence of working with 99.999% uptime best in class security and expert support from the creators of Redis. Implement relational databases, active-active, geo-distribution, built in conflict distribution for simple and complex data types, & reads/writes in multiple geo regions to the same data set. Redis Enterprise offers flexible deployment options, cloud on-prem, & hybrid. Redis Labs: home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
    Starting Price: Free
  • 5
    Apache Kafka

    Apache Kafka

    The Apache Software Foundation

    Apache Kafka® is an open-source, distributed streaming platform. Scale production clusters up to a thousand brokers, trillions of messages per day, petabytes of data, hundreds of thousands of partitions. Elastically expand and contract storage and processing. Stretch clusters efficiently over availability zones or connect separate clusters across geographic regions. Process streams of events with joins, aggregations, filters, transformations, and more, using event-time and exactly-once processing. Kafka’s out-of-the-box Connect interface integrates with hundreds of event sources and event sinks including Postgres, JMS, Elasticsearch, AWS S3, and more. Read, write, and process streams of events in a vast array of programming languages.
  • 6
    Weaviate

    Weaviate

    Weaviate

    Weaviate is an open-source vector database. It allows you to store data objects and vector embeddings from your favorite ML-models, and scale seamlessly into billions of data objects. Whether you bring your own vectors or use one of the vectorization modules, you can index billions of data objects to search through. Combine multiple search techniques, such as keyword-based and vector search, to provide state-of-the-art search experiences. Improve your search results by piping them through LLM models like GPT-3 to create next-gen search experiences. Beyond search, Weaviate's next-gen vector database can power a wide range of innovative apps. Perform lightning-fast pure vector similarity search over raw vectors or data objects, even with filters. Combine keyword-based search with vector search techniques for state-of-the-art results. Use any generative model in combination with your data, for example to do Q&A over your dataset.
    Starting Price: Free
  • 7
    Milvus

    Milvus

    Zilliz

    Vector database built for scalable similarity search. Open-source, highly scalable, and blazing fast. Store, index, and manage massive embedding vectors generated by deep neural networks and other machine learning (ML) models. With Milvus vector database, you can create a large-scale similarity search service in less than a minute. Simple and intuitive SDKs are also available for a variety of different languages. Milvus is hardware efficient and provides advanced indexing algorithms, achieving a 10x performance boost in retrieval speed. Milvus vector database has been battle-tested by over a thousand enterprise users in a variety of use cases. With extensive isolation of individual system components, Milvus is highly resilient and reliable. The distributed and high-throughput nature of Milvus makes it a natural fit for serving large-scale vector data. Milvus vector database adopts a systemic approach to cloud-nativity, separating compute from storage.
    Starting Price: Free
  • 8
    Chroma

    Chroma

    Chroma

    Chroma is an AI-native open-source embedding database. Chroma has all the tools you need to use embeddings. Chroma is building the database that learns. Pick up an issue, create a PR, or participate in our Discord and let the community know what features you would like.
    Starting Price: Free
  • 9
    LanceDB

    LanceDB

    LanceDB

    LanceDB is a developer-friendly, open source database for AI. From hyperscalable vector search and advanced retrieval for RAG to streaming training data and interactive exploration of large-scale AI datasets, LanceDB is the best foundation for your AI application. Installs in seconds and fits seamlessly into your existing data and AI toolchain. An embedded database (think SQLite or DuckDB) with native object storage integration, LanceDB can be deployed anywhere and easily scales to zero when not in use. From rapid prototyping to hyper-scale production, LanceDB delivers blazing-fast performance for search, analytics, and training for multimodal AI data. Leading AI companies have indexed billions of vectors and petabytes of text, images, and videos, at a fraction of the cost of other vector databases. More than just embedding. Filter, select, and stream training data directly from object storage to keep GPU utilization high.
    Starting Price: $16.03 per month
  • 10
    Azure AI Search
    Deliver high-quality responses with a vector database built for advanced retrieval augmented generation (RAG) and modern search. Focus on exponential growth with an enterprise-ready vector database that comes with security, compliance, and responsible AI practices built in. Build better applications with sophisticated retrieval strategies backed by decades of research and customer validation. Quickly deploy your generative AI app with seamless platform and data integrations for data sources, AI models, and frameworks. Automatically upload data from a wide range of supported Azure and third-party sources. Streamline vector data processing with built-in extraction, chunking, enrichment, and vectorization, all in one flow. Support for multivector, hybrid, multilingual, and metadata filtering. Move beyond vector-only search with keyword match scoring, reranking, geospatial search, and autocomplete.
    Starting Price: $0.11 per hour
  • 11
    SAP HANA
    SAP HANA in-memory database is for transactional and analytical workloads with any data type — on a single data copy. It breaks down the transactional and analytical silos in organizations, for quick decision-making, on premise and in the cloud. Innovate without boundaries on a database management system, where you can develop intelligent and live solutions for quick decision-making on a single data copy. And with advanced analytics, you can support next-generation transactional processing. Build data solutions with cloud-native scalability, speed, and performance. With the SAP HANA Cloud database, you can gain trusted, business-ready information from a single solution, while enabling security, privacy, and anonymization with proven enterprise reliability. An intelligent enterprise runs on insight from data – and more than ever, this insight must be delivered in real time.
  • 12
    Neo4j

    Neo4j

    Neo4j

    Neo4j’s graph data platform is purpose-built to leverage not only data but also data relationships. Using Neo4j, developers build intelligent applications that traverse today's large, interconnected datasets in real time. Powered by a native graph storage and processing engine, Neo4j’s graph database delivers an intuitive, flexible and secure database for unique, actionable insights.
  • 13
    PostgreSQL

    PostgreSQL

    PostgreSQL Global Development Group

    PostgreSQL is a powerful, open-source object-relational database system with over 30 years of active development that has earned it a strong reputation for reliability, feature robustness, and performance. There is a wealth of information to be found describing how to install and use PostgreSQL through the official documentation. The open-source community provides many helpful places to become familiar with PostgreSQL, discover how it works, and find career opportunities. Learm more on how to engage with the community. The PostgreSQL Global Development Group has released an update to all supported versions of PostgreSQL, including 15.1, 14.6, 13.9, 12.13, 11.18, and 10.23. This release fixes 25 bugs reported over the last several months. This is the final release of PostgreSQL 10. PostgreSQL 10 will no longer receive security and bug fixes. If you are running PostgreSQL 10 in a production environment, we suggest that you make plans to upgrade.
  • 14
    Qdrant

    Qdrant

    Qdrant

    Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more! Provides the OpenAPI v3 specification to generate a client library in almost any programming language. Alternatively utilise ready-made client for Python or other programming languages with additional functionality. Implement a unique custom modification of the HNSW algorithm for Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results. Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values.
  • 15
    LlamaIndex

    LlamaIndex

    LlamaIndex

    LlamaIndex is a “data framework” to help you build LLM apps. Connect semi-structured data from API's like Slack, Salesforce, Notion, etc. LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. LlamaIndex provides the key tools to augment your LLM applications with data. Connect your existing data sources and data formats (API's, PDF's, documents, SQL, etc.) to use with a large language model application. Store and index your data for different use cases. Integrate with downstream vector store and database providers. LlamaIndex provides a query interface that accepts any input prompt over your data and returns a knowledge-augmented response. Connect unstructured sources such as documents, raw text files, PDF's, videos, images, etc. Easily integrate structured data sources from Excel, SQL, etc. Provides ways to structure your data (indices, graphs) so that this data can be easily used with LLMs.
  • 16
    FalkorDB

    FalkorDB

    FalkorDB

    ​FalkorDB is an ultra-fast, multi-tenant graph database optimized for GraphRAG, delivering accurate, relevant AI/ML results with reduced hallucinations and enhanced performance. It leverages sparse matrix representations and linear algebra to efficiently handle complex, interconnected data in real-time, resulting in fewer hallucinations and more accurate responses from large language models. FalkorDB supports the OpenCypher query language with proprietary enhancements, enabling expressive and efficient querying of graph data. It offers built-in vector indexing and full-text search capabilities, allowing for complex searches and similarity matching within the same database environment. FalkorDB's architecture includes multi-graph support, enabling multiple isolated graphs within a single instance, ensuring security and performance across tenants. It also provides high availability with live replication, ensuring data is always accessible.
  • Previous
  • You're on page 1
  • Next