Best Data Pipeline Software for Mid Size Business

Compare the Top Data Pipeline Software for Mid Size Business as of July 2025

What is Data Pipeline Software for Mid Size Business?

Data pipeline software helps businesses automate the movement, transformation, and storage of data from various sources to destinations such as data warehouses, lakes, or analytic platforms. These platforms provide tools for extracting data from multiple sources, processing it in real-time or batch, and loading it into target systems for analysis or reporting (ETL: Extract, Transform, Load). Data pipeline software often includes features for data monitoring, error handling, scheduling, and integration with other software tools, making it easier for organizations to ensure data consistency, accuracy, and flow. By using this software, businesses can streamline data workflows, improve decision-making, and ensure that data is readily available for analysis. Compare and read user reviews of the best Data Pipeline software for Mid Size Business currently available using the table below. This list is updated regularly.

  • 1
    Cribl Stream
    Cribl Stream allows you to implement an observability pipeline which helps you parse, restructure, and enrich data in flight - before you pay to analyze it. Get the right data, where you want, in the formats you need. Route data to the best tool for the job - or all the tools for the job - by translating and formatting data into any tooling schema you require. Let different departments choose different analytics environments without having to deploy new agents or forwarders. As much as 50% of log and metric data goes unused – null fields, duplicate data, and fields that offer zero analytical value. With Cribl Stream, you can trim wasted data streams and analyze only what you need. Cribl Stream is the best way to get multiple data formats into the tools you trust for your Security and IT efforts. Use the Cribl Stream universal receiver to collect from any machine data source - and even to schedule batch collection from REST APIs, Kinesis Firehose, Raw HTTP, and Microsoft Office 365 APIs
    Starting Price: Free (1TB / Day)
    View Software
    Visit Website
  • 2
    DataBahn

    DataBahn

    DataBahn

    DataBahn.ai is redefining how enterprises manage the explosion of security and operational data in the AI era. Our AI-powered data pipeline and fabric platform helps organizations securely collect, enrich, orchestrate, and optimize enterprise data—including security, application, observability, and IoT/OT telemetry—for analytics, automation, and AI. With native support for over 400 integrations and built-in enrichment capabilities, DataBahn streamlines fragmented data workflows and reduces SIEM and infrastructure costs from day one. The platform requires no specialist training, enabling security and IT teams to extract insights in real time and adapt quickly to new demands. We've helped Fortune 500 and Global 2000 companies reduce data processing costs by over 50% and automate more than 80% of their data engineering workloads.
    View Software
    Visit Website
  • 3
    DataBuck

    DataBuck

    FirstEigen

    DataBuck is an AI-powered data validation platform that automates risk detection across dynamic, high-volume, and evolving data environments. DataBuck empowers your teams to: ✅ Enhance trust in analytics and reports, ensuring they are built on accurate and reliable data. ✅ Reduce maintenance costs by minimizing manual intervention. ✅ Scale operations 10x faster compared to traditional tools, enabling seamless adaptability in ever-changing data ecosystems. By proactively addressing system risks and improving data accuracy, DataBuck ensures your decision-making is driven by dependable insights. Proudly recognized in Gartner’s 2024 Market Guide for #DataObservability, DataBuck goes beyond traditional observability practices with its AI/ML innovations to deliver autonomous Data Trustability—empowering you to lead with confidence in today’s data-driven world.
    View Software
    Visit Website
  • 4
    QuerySurge
    QuerySurge leverages AI to automate the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Apps/ERPs with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Hadoop & NoSQL Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise App/ERP Testing QuerySurge Features - Projects: Multi-project support - AI: automatically create datas validation tests based on data mappings - Smart Query Wizards: Create tests visually, without writing SQL - Data Quality at Speed: Automate the launch, execution, comparison & see results quickly - Test across 200+ platforms: Data Warehouses, Hadoop & NoSQL lakes, databases, flat files, XML, JSON, BI Reports - DevOps for Data & Continuous Testing: RESTful API with 60+ calls & integration with all mainstream solutions - Data Analytics & Data Intelligence:  Analytics dashboard & reports
  • 5
    Dagster

    Dagster

    Dagster Labs

    Dagster is a next-generation orchestration platform for the development, production, and observation of data assets. Unlike other data orchestration solutions, Dagster provides you with an end-to-end development lifecycle. Dagster gives you control over your disparate data tools and empowers you to build, test, deploy, run, and iterate on your data pipelines. It makes you and your data teams more productive, your operations more robust, and puts you in complete control of your data processes as you scale. Dagster brings a declarative approach to the engineering of data pipelines. Your team defines the data assets required, quickly assessing their status and resolving any discrepancies. An assets-based model is clearer than a tasks-based one and becomes a unifying abstraction across the whole workflow.
    Starting Price: $0
  • 6
    Nextflow

    Nextflow

    Seqera Labs

    Data-driven computational pipelines. Nextflow enables scalable and reproducible scientific workflows using software containers. It allows the adaptation of pipelines written in the most common scripting languages. Its fluent DSL simplifies the implementation and deployment of complex parallel and reactive workflows on clouds and clusters. Nextflow is built around the idea that Linux is the lingua franca of data science. Nextflow allows you to write a computational pipeline by making it simpler to put together many different tasks. You may reuse your existing scripts and tools and you don't need to learn a new language or API to start using it. Nextflow supports Docker and Singularity containers technology. This, along with the integration of the GitHub code-sharing platform, allows you to write self-contained pipelines, manage versions, and rapidly reproduce any former configuration. Nextflow provides an abstraction layer between your pipeline's logic and the execution layer.
    Starting Price: Free
  • 7
    Astro by Astronomer
    For data teams looking to increase the availability of trusted data, Astronomer provides Astro, a modern data orchestration platform, powered by Apache Airflow, that enables the entire data team to build, run, and observe data pipelines-as-code. Astronomer is the commercial developer of Airflow, the de facto standard for expressing data flows as code, used by hundreds of thousands of teams across the world.
  • 8
    Kestra

    Kestra

    Kestra

    Kestra is an open-source, event-driven orchestrator that simplifies data operations and improves collaboration between engineers and business users. By bringing Infrastructure as Code best practices to data pipelines, Kestra allows you to build reliable workflows and manage them with confidence. Thanks to the declarative YAML interface for defining orchestration logic, everyone who benefits from analytics can participate in the data pipeline creation process. The UI automatically adjusts the YAML definition any time you make changes to a workflow from the UI or via an API call. Therefore, the orchestration logic is defined declaratively in code, even if some workflow components are modified in other ways.
  • Previous
  • You're on page 1
  • Next