Compare the Top In-Memory Databases for Cloud as of June 2025

What are In-Memory Databases for Cloud?

In-memory databases store data directly in a system’s main memory (RAM) rather than on traditional disk-based storage, enabling much faster data access and processing. This approach significantly reduces latency and increases performance, making in-memory databases ideal for real-time analytics, high-frequency transactions, and applications requiring rapid data retrieval. They are often used in industries like finance, telecommunications, and e-commerce, where speed and scalability are critical. In-memory databases support both SQL and NoSQL models and typically include features for data persistence to avoid data loss during system shutdowns. Ultimately, they provide high-speed performance for time-sensitive applications while ensuring data availability and integrity. Compare and read user reviews of the best In-Memory Databases for Cloud currently available using the table below. This list is updated regularly.

  • 1
    eXtremeDB

    eXtremeDB

    McObject

    How is platform independent eXtremeDB different? - Hybrid data storage. Unlike other IMDS, eXtremeDB can be all-in-memory, all-persistent, or have a mix of in-memory tables and persistent tables - Active Replication Fabric™ is unique to eXtremeDB, offering bidirectional replication, multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more - Row & Columnar Flexibility for Time Series Data supports database designs that combine row-based and column-based layouts, in order to best leverage the CPU cache speed - Embedded and Client/Server. Fast, flexible eXtremeDB is data management wherever you need it, and can be deployed as an embedded database system, and/or as a client/server database system -A hard real-time deterministic option in eXtremeDB/rt Designed for use in resource-constrained, mission-critical embedded systems. Found in everything from routers to satellites to trains to stock markets worldwide
  • 2
    Dragonfly

    Dragonfly

    DragonflyDB

    Dragonfly is a drop-in Redis replacement that cuts costs and boosts performance. Designed to fully utilize the power of modern cloud hardware and deliver on the data demands of modern applications, Dragonfly frees developers from the limits of traditional in-memory data stores. The power of modern cloud hardware can never be realized with legacy software. Dragonfly is optimized for modern cloud computing, delivering 25x more throughput and 12x lower snapshotting latency when compared to legacy in-memory data stores like Redis, making it easy to deliver the real-time experience your customers expect. Scaling Redis workloads is expensive due to their inefficient, single-threaded model. Dragonfly is far more compute and memory efficient, resulting in up to 80% lower infrastructure costs. Dragonfly scales vertically first, only requiring clustering at an extremely high scale. This results in a far simpler operational model and a more reliable system.
    Starting Price: Free
  • 3
    Amazon MemoryDB
    Valkey- and Redis OSS-compatible, durable, in-memory database service for ultra-fast performance. Scale to hundreds of millions of requests per second and over one hundred terabytes of storage per cluster. Stores data durably using a multi-AZ transaction log for 99.99% availability and near-instantaneous recovery without data loss. Secure your data with encryption at rest and in transit, private VPC endpoints, and multiple authentication mechanisms, including IAM authentication. Quickly build applications with Valkey and Redis OSS data structures and a rich open source API, and easily integrate with other AWS services. Deliver real-time personalized experiences with the highest relevancy and fastest semantic search experience among popular vector databases on AWS. Simplify application development and improve time-to-market with built-in access to flexible data structures that are available in Valkey and Redis OSS.
    Starting Price: $0.2163 per hour
  • 4
    Tarantool

    Tarantool

    Tarantool

    Corporations need a way to ensure uninterrupted operation of their systems, high speed of data processing, and reliability of storage. The in-memory technologies have proven themselves well in solving these problems. For more than 10 years, Tarantool has been helping companies all over the world build smart caches, data marts, and golden client profiles while saving server capacity. Reduce the cost of storing credentials compared to siloed solutions and improve the service and security of client applications. Reduce data management costs of maintaining a large number of disparate systems that store customer identities. Increase sales by improving the speed and quality of customer recommendations for goods or services through the analysis of user behavior and user data. Improve mobile and web channel service by accelerating frontends to reduce user outflow. IT systems of large organizations operate in a closed loop of a local network, where data circulates unprotected.
  • 5
    RocksDB

    RocksDB

    RocksDB

    RocksDB uses a log structured database engine, written entirely in C++, for maximum performance. Keys and values are just arbitrarily-sized byte streams. RocksDB is optimized for fast, low latency storage such as flash drives and high-speed disk drives. RocksDB exploits the full potential of high read/write rates offered by flash or RAM. RocksDB provides basic operations such as opening and closing a database, reading and writing to more advanced operations such as merging and compaction filters. RocksDB is adaptable to different workloads. From database storage engines such as MyRocks to application data caching to embedded workloads, RocksDB can be used for a variety of data needs.
  • Previous
  • You're on page 1
  • Next