Cohere Embed
Cohere's Embed is a leading multimodal embedding platform designed to transform text, images, or a combination of both into high-quality vector representations. These embeddings are optimized for semantic search, retrieval-augmented generation, classification, clustering, and agentic AI applications. The latest model, embed-v4.0, supports mixed-modality inputs, allowing users to combine text and images into a single embedding. It offers Matryoshka embeddings with configurable dimensions of 256, 512, 1024, or 1536, enabling flexibility in balancing performance and resource usage. With a context length of up to 128,000 tokens, embed-v4.0 is well-suited for processing large documents and complex data structures. It also supports compressed embedding types, including float, int8, uint8, binary, and ubinary, facilitating efficient storage and faster retrieval in vector databases. Multilingual support spans over 100 languages, making it a versatile tool for global applications.
Learn more
Gemini Embedding
Gemini Embedding’s first text model (gemini-embedding-001) is now generally available via the Gemini API and Vertex AI, having held a top spot on the Massive Text Embedding Benchmark Multilingual leaderboard since its experimental launch in March, thanks to superior performance across retrieval, classification, and other embedding tasks compared to both legacy Google and external proprietary models. Exceptionally versatile, it supports over 100 languages with a 2,048‑token input limit and employs the Matryoshka Representation Learning (MRL) technique to let developers choose output dimensions of 3072, 153,6, or 768 for optimal quality, performance, and storage efficiency. Developers can access it through the existing embed_content endpoint in the Gemini API, and while legacy experimental versions will be deprecated later in 2025, migration requires no re‑embedding of existing content.
Learn more
Yardi Voyager
Yardi Voyager is a web-based, fully integrated end-to-end platform with mobile access for larger portfolios to manage operations, execute leasing, run analytics, and provide innovative resident, tenant, and investor services. With a solution and best-of-breed product suite designed for every real estate market including commercial (office, retail, industrial), multifamily, affordable, senior, PHA and military housing, Voyager helps you meet all your property management and accounting needs using a single database to run your entire business. Voyager automates workflows and provides system-wide transparency that enables you to work more productively and collaboratively than ever before. Using any browser and mobile device, Voyager gives you instant access to your data. And as a SaaS platform, Voyager frees you from managing your software — so you can focus on your business.
Learn more
Codestral Embed
Codestral Embed is Mistral AI's first embedding model, specialized for code, optimized for high-performance code retrieval and semantic understanding. It significantly outperforms leading code embedders in the market today, such as Voyage Code 3, Cohere Embed v4.0, and OpenAI’s large embedding model. Codestral Embed can output embeddings with different dimensions and precisions; for instance, with a dimension of 256 and int8 precision, it still performs better than any model from competitors. The dimensions of the embeddings are ordered by relevance, allowing users to choose the first n dimensions for a smooth trade-off between quality and cost. It excels in retrieval use cases on real-world code data, particularly in benchmarks like SWE-Bench, which is based on real-world GitHub issues and corresponding fixes, and Text2Code (GitHub), relevant for providing context for code completion or editing.
Learn more