Compare the Top Vector Databases as of November 2025

What are Vector Databases?

Vector databases are a type of database that use vector-based data structures, rather than the traditional relational models, to store information. They are used in artificial intelligence (AI) applications such as machine learning, natural language processing and image recognition. Vector databases support fast and efficient data storage and retrieval processes, making them an ideal choice for AI use cases. They also enable the integration of structured and unstructured datasets into a single system, offering enhanced scalability for complex projects. Compare and read user reviews of the best Vector Databases currently available using the table below. This list is updated regularly.

  • 1
    Zilliz Cloud
    Zilliz Cloud is a fully managed vector database based on the popular open-source Milvus. Zilliz Cloud helps to unlock high-performance similarity searches with no previous experience or extra effort needed for infrastructure management. It is ultra-fast and enables 10x faster vector retrieval, a feat unparalleled by any other vector database management system. Zilliz includes support for multiple vector search indexes, built-in filtering, and complete data encryption in transit, a requirement for enterprise-grade applications. Zilliz is a cost-effective way to build similarity search, recommender systems, and anomaly detection into applications to keep that competitive edge.
    Starting Price: $0
  • 2
    Milvus

    Milvus

    Zilliz

    Vector database built for scalable similarity search. Open-source, highly scalable, and blazing fast. Store, index, and manage massive embedding vectors generated by deep neural networks and other machine learning (ML) models. With Milvus vector database, you can create a large-scale similarity search service in less than a minute. Simple and intuitive SDKs are also available for a variety of different languages. Milvus is hardware efficient and provides advanced indexing algorithms, achieving a 10x performance boost in retrieval speed. Milvus vector database has been battle-tested by over a thousand enterprise users in a variety of use cases. With extensive isolation of individual system components, Milvus is highly resilient and reliable. The distributed and high-throughput nature of Milvus makes it a natural fit for serving large-scale vector data. Milvus vector database adopts a systemic approach to cloud-nativity, separating compute from storage.
    Starting Price: Free
  • 3
    Oracle Autonomous Database
    Oracle Autonomous Database is a fully automated cloud database that uses machine learning to automate database tuning, security, backups, updates, and other routine management tasks traditionally performed by DBAs. It supports a wide range of data types and models, including SQL, JSON documents, graph, geospatial, text, and vectors, enabling developers to build applications for any workload without integrating multiple specialty databases. Built-in AI and machine learning capabilities allow for natural language queries, automated data insights, and the development of AI-powered applications. It offers self-service tools for data loading, transformation, analysis, and governance, reducing the need for IT intervention. It provides flexible deployment options, including serverless and dedicated infrastructure on Oracle Cloud Infrastructure (OCI), as well as on-premises with Exadata Cloud@Customer.
    Starting Price: $123.86 per month
  • 4
    TigerData

    TigerData

    TigerData

    TigerData is a high-performance, cloud-native PostgreSQL platform built for real-time analytics, time-series processing, vector workloads and intelligent agent-driven applications. It retains full SQL compatibility while delivering exceptional speed and scale: the platform powers millions of databases, supports streaming data across devices and applications, and enables organizations to consolidate transactional and analytical workloads in a single engine. TigerData enhances PostgreSQL with extensions and execution optimizations that provide low-latency queries, high-concurrency insert rates, hybrid operational/analytical use cases and vector embedding support for AI-driven workloads. Developers gain simplicity and reliability by staying within PostgreSQL’s ecosystem, familiar tools, connectors and syntax, while unlocking performance on par with purpose-built time-series or vector engines.
    Starting Price: $30 per month
  • 5
    CrateDB

    CrateDB

    CrateDB

    The enterprise database for time series, documents, and vectors. Store any type of data and combine the simplicity of SQL with the scalability of NoSQL. CrateDB is an open source distributed database running queries in milliseconds, whatever the complexity, volume and velocity of data.
  • 6
    Supabase

    Supabase

    Supabase

    Create a backend in less than 2 minutes. Start your project with a Postgres database, authentication, instant APIs, real-time subscriptions and storage. Build faster and focus on your products. Every project is a full Postgres database, the world's most trusted relational database. Add user sign-ups and logins, securing your data with Row Level Security. Store, organize and serve large files. Any media, including videos and images. Write custom code and cron jobs without deploying or scaling servers. There are many example apps and starter projects to get going. We introspect your database to provide APIs instantly. Stop building repetitive CRUD endpoints and focus on your product. Type definitions built directly from your database schema. Use Supabase in the browser without a build process. Develop locally and push to production when you're ready. Manage Supabase projects from your local machine.
    Starting Price: $25 per month
  • Previous
  • You're on page 1
  • Next